Byt ut Livsmedelsverkets experter

Uppdaterad vesion med hittills kända fakta 2016-01-23

Livsmedelsverket har skaffat sig en ny grupp med experter kallad

Expertgruppen i nutrition och folkhälsa

 

Jag har beställt och fått ut jävsdeklarationerna från Livsmedelsverket

 

Efter att ha läst jävsdeklarationerna och andra källor kräver jag att Emily Sonestedt, Agneta Yngve, Alicja Wolk, Elisabeth Rothenberg, Agneta Hörnell, Agneta Åkesson och Ingrid Larsson omedelbart ska skiljas från uppdraget på grund av att de underlåtit att korrekt ange de jäv de har.

 

Vad jag kan finna är att Ulf Gerdtham saknar jäv. Jag har ännu inte fått fram något komprometterande i jävsdeklarationerna eller annorstädes.

 

Emily Sonestedt och Ingrid Larsson som båda till synes överlagt och uppsåtligt har underlåtit att uppge att de är medförfattare eller granskare i Swedish Nutrition Foundations (SNF) lilla sockerpropagandaskrift

Socker

Socker - fakta och hälsomässiga aspekter

Socker och beroende - en vetenskapsbaserad kunskapsöversikt

Källa:

http://snf.ideon.se/wp-content/uploads/2015/01/Socker_FINAL_december_20141.pdf 
från december 2014.

 

Detta häfte är en vetenskaplig katastrof med många felaktiga och kraftigt vinklade "fakta" om socker.

 

SNF är en ren lobbyorganisation förklädd till forskningsinstitut med stora livsmedelsjättar som medlemmar. http://snf.ideon.se/medlemsforetag/

 

Christel Larsson har uppgett att hon är medförfattare och har därmed redogjort korrekt men hon har även andra oacceptabla jäv som att sitta i SNFs forskningsnämnd.

 

Agneta Yngve, Alicja Wolk, Elisabeth Rothenberg, Agneta Hörnell, Agneta Åkesson har samtliga till synes överlagt och uppsåtligt underlåtit att uppge att de suttit i den stora gruppen Nordiska NäringsRekommendationer 5, den grupp som tog fram den selekterade forskningen som ligger till grund för Livsmedelsverkets nya kostråd benämnda NNR12. NNR12 skiljer sig obetydligt från NNR4 som Statens Beredning för medicinsk och social Utvärdering (SBU) i sin rapport ”Mat vid diabetes” 2010 fann helt sakna vetenskaplig grund.

 

Alicja Wolk har också till synes överlagt och uppsåtligt underlåtit att meddela att hon varit med i SNRs Editorial board och SNRs forskningsnämnd samt att hon medverkade i SBUs rapport Mat vid diabetes. I den jävsdeklaration Alicja Wolk ingav till SBU 2008 fanns två ”eventuella” jäv. I de tre slutliga versionerna av rapporten hade Alicja Wolk uppgett sammanlagt 24 jäv och samtidigt underlåtit att uppge att Alicja Wolk suttit med i Livsmedelsverkets expertgrupp för kost och hälsa. Alicja Wolk har i sin roll som expert i SBU bedömt vetenskapen bakom de kostråd från Livsmedelsverket som Alicja Wolk själv i sin roll som expert i Livsmedelsverket varit med att fastställa/godkänna.

 

Dessa fakta innebär att Alicja Wolk, Emily Sonestedt, Agneta Yngve, Elisabeth Rothenberg, Agneta Hörnell, Agneta Åkesson och Ingrid Larsson omedelbart ska skiljas från uppdraget på grund av att de till synes uppsåtligen och överlagt underlåtit att korrekt ange de jäv de har. De kan därmed även till synes överlagt och uppsåtligt ha brutit mot 1 kapitlet 9 § Regeringsformen samt även 9 kapitlet 1 och 3 §§ Brottsbalken.

 

Övriga ledamöter Roger Andersson, Magnus Domellöv, Christel Larsson, Maria Magnusson, och Paulina Nowicka (utom Ulf Gerdtham som hittills synes sakna jäv) har, liksom även Alicja Wolk, Emily Sonestedt, Agneta Yngve, Elisabeth Rothenberg, Agneta Hörnell, Agneta Åkesson och Ingrid Larsson, alltför grava jäv till livsmedelsföretag, läkemedelsföretag, lobbyorganisationer, NNR5 och internationella dietistorganisationer och därför bör de avsättas under mer ordnade former.

 

Det är bekymmersamt att ett par av Livsmedelsverkets högsta tjänstemän med oläsliga namnteckningar, synes godkänna precis vilka jäv som helst.

 

Det är bekymmersamt att de experter som föreslagit expertgruppens medlemmar utgörs av Ursula Schwab, Finland, och Inga Thorsdottir, Island, som har varit ledande i den totalhavererade arbetsgruppen för NNR5/NNR12. Livsmedelsverket kan inte uppge dessa experters jävsdeklarationer trots att jävsdeklarationerna borde finnas på Livsmedelsverket som var värdorganisation för NNR5 och därmed hade hand om all dokumentation inom NNR5. Den information med länkar som fanns tidigare till NNR5/Livsmedelsverkets hemsida kan inte längre återfinnas

 

SLUTSATS:

Livsmedelsverket har tillsatt en expertgrupp med hjälp av jäviga externa experter.

 

Alla experter i gruppen utom en synes ha oacceptabla bindningar och jäv till livsmedelsföretag, läkemedelsföretag, lobbyorganisationer och internationella dietistorganisationer som dock ett par av Livsmedelsverkets högsta tjänstemän godkänt i strid med 11 och 12 §§ Förvaltningslagen.

 

Värst är dock att två av Livsmedelsverkets högsta tjänstemän godkänt att sju av experterna, Alicja Wolk, Emily Sonestedt, Agneta Yngve, Elisabeth Rothenberg, Agneta Hörnell och Ingrid Larsson, till synes överlagt och uppsåtligen underlåtit att i sina jävsdeklarationer uppge att de har allvarliga jävsbindningar.

 

Jag begär att Livsmedelsverket omedelbart skiljer

Emily Sonestedt, Agneta Yngve, Alicja Wolk, Elisabeth Rothenberg, Agneta Hörnell, Agneta Åkesson och Ingrid Larsson

från uppdraget som experter och anmäls till åklagare på grund av att de till synes överlagt och uppsåtligt synes ha brutit mot 1 kapitlet 9 § Regeringsformen samt även 9 kapitlet 1 och 3 §§ Brottsbalken (undanhållande av information som kan ge upp till sex års fängelse).

 

Jag begär att Livsmedelsverket snarast skiljer

Roger Andersson, Magnus Domellöv, Christel Larsson, Maria Magnusson och Paulina Nowicka från uppdraget som experter i Livsmedelsverkets Expertgrupp i nutrition och folkhälsa på grund av att de har alltför många och allvarliga jäv till livs- och läkemedelsindustri samt ökända organisationer med koppling till industrin.

 

Björn Hammarskjöld
Assisterande professor
F.d. överläkare i pediatrik
Filosofie licentiat i biokemi
Oberoende Senior Vetenskapsman i Nutrition


Nytt svar till Livsmedelsverket

 Det kom ett svar från Livsmedelsverket.

Generaldirektören låter bli att smutsa ned händerna och överlåter synbarligen jobbet till AK Lindroos.Så en kopia har gått till landsbygdsministern Bucht också.

AnnaKarin.Lindroos@slv.se skrev den 2015-03-12 16:12:

Hej,

 Tack för dina synpunkter. För en mer utförlig genomgång av det vetenskapliga underlaget om salt hänvisar jag till de nordiska näringsrekommendationerna 2012, sidan 515 och framåt.

http://www.livsmedelsverket.se/globalassets/matvanor-halsa-miljo/naringsrekommendationer/nordic-nutrition-recommendations-2012.pdf

Här kommer länken till artikeln som var lite svårt att hitta. http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=7516568&fileId=S1368980009991431

Med vänlig hälsning

Anna Karin Lindroos

Risk- och nyttovärderare/leg dietist, med dr
Avdelningen för undersökning och vetenskapligt stöd

Risk- och nyttovärderingsenheten

 

Så det blir ett nytt svar till Livsmedelsverket:

Hej generaldirektören Stig Orustfjord vid Livsmedelsverket!

Jag tackar återigen för Livsmedelsverkets svar nedan!

Jag förstår inte att Livsmedelsverket fortsätter att bryta mot diverse lagar inklusive grundlag.

Det är förskräckande att en svensk myndighet konsekvent synes bryta mol lag och grundlag.

Det är myndighetschefen som enligt 3 § Myndighetsförordning (2007:515) är ansvarig för att myndigheten följer lag.

Så här kommer ett nytt svar på Livsmedelsverkets lagbrytande svar.

Jag har läst den artikel som ni hänvisar till

http://journals.cambridge.org/download.php?file=%2FPHN%2FPHN13_05%2FS1368980009991431a.pdf&code=3ae761b3ce0803e34c8f885f98070afa

Abstract

Objective: To measure dietary salt intake in a Swedish population.

Design: A cross-sectional study with measured 24 h urinary excretion of Na and K

Författarna har redan i sammanfattningen angett att man vill

mäta mängden salt i maten hos den svenska befolkningen.

Sedan mäter man ett urval av unga män där man mäter dygnsmängden natrium och kalium i urinen.

Redan här visar det sig en diskrepans mellan vad man vill mäta och vad man mäter.

Författarna saknar uppenbarligen kunskap om att unga män har mer än urin som källa till saltutsöndring. Man har glömt både svett och avföring som förlustkällor för salter.

Denna studie saknar helt beräkningar av intag av salt. Det enda man har beräknat är mängden salt i urinen som uppgick till 11,5 g salt i genomsnitt per dygn. Men man har underlåtit att beräkna mängden salt i maten som personerna åt.

Det visade sig att de åt i genomsnitt 3 400 kcal/dag.

11,5 g salt på 3 400 kcal ger 0,34 % salt i maten vilket är en för låg siffra. Maten blir då helt smaklös. 79 unga män vägrar att äta en så smaklös mat.

Enligt Livsmedelsverkets och Finelis databaser innehåller vanlig mat minst 1 g salt per 100 g mat. Enligt Livsmedelsverkets och Finelis databaser innehåller vanlig mat omkring 1 kcal/g mat.

Då innehåller den mängd mat som försökspersonerna åt minst 32 gram salt per dag.

Utöver de uppgivna 11,5 g salt i urinen så har dessa unga män minst 1 g saltförlust via avföringen och bara den osynliga svettningen om en halvliter per dygn ger ytterligare 5 g salt i förlust som författarna underlåtit att räkna med. Unga män brukar röra på sig och svettas ytterligare minst en liter svett per dag.

Sammanlagt blir det 11,5+1+5+10 det vill säga mer än 27,5 g salt per dag som dessa 79 unga män måste ha ätit. Detta stämmer ganska bra med minst 32 g salt i maten.

Man skriver vidare:

Blood pressure is not significantly related to salt excretion in the present study. As high blood pressure is a disease generally starting in the third and fourth decades of life, it may not be surprising that there was no correlation between Na excretion and blood pressure in this relatively small study in young men. One may, however, speculate what will happen with blood pressure in the next decades if the high Na intake is maintained, as the kidneys’ ability to excrete excess Na is reduced with age(18,19)

Detta är alltså fria spekulationer i artikeln utan någon form av vetenskap eller kunskap bakom.

Till slut skriver man:

We have investigated the salt intake in a group of young men, using the 24 h urinary excretion of Na as the measure of salt intake. We also measured the excretion of K and calculated the total energy intake from the diet and Na intake from various foods.

Detta synes vara rena fria fantasier från författarnas sida, inget går att belägga med de data som anges.

Med andra ord; denna studie ger inte svar på den fråga som ställs och har uppenbara felaktigheter och saknade data.

Studien måste därför betraktas som en klassisk fuskstudie av personer med kända jäv gentemot livs- och läkemedelsindustrin.

Låt oss gå vidare till NNR5.

Det står på NNR5 sidan 529
http://www.livsmedelsverket.se/globalassets/matvanor-halsa-miljo/naringsrekommendationer/nordic-nutrition-recommendations-2012.pdf

Reasoning behind the recommendation

There is a progressive dose-response relationship between sodium intake and blood pressure. Results from both prospective cohort studies and randomised controlled trials generally show that sodium intake is positively associated with an increased risk of stroke and cardiovascular events and mortality among the general adult population. A precise lower threshold for intakes associated with health benefits is difficult to assess, but intakes of 4 g/d to 6 g/d for adults have been recommended internationally. Based on an overall evaluation of the available data, a limitation of the sodium intake to about 2.4 g/d – corresponding to 6 g salt (NaCl) – is feasible at the population level in the Nordic countries. Thus, the recommendation in NNR 2004 is maintained.

Även här saknas all form av korrekta data. Det saknas ett progressivt dos-svarsförhållande mellan natriumintag och blodtryck. Samtliga studier som man hänvisar till är skeva på grund av att man jämför ett lågt saltintag på mellan 6-9 g salt per dag med ett saltintag som är tre g lägre. Sedan mäter man blodtrycket efter upp till fyra veckor och finner en sänkning av blodtrycket med insignifikanta 1-5 mm Hg i blodtryck.

Samtliga studier saknar den tredje studiearmen som innehåller minst 30 g salt per dag att jämföra med de mindre mängderna salt.

Det något lägre blodtrycket vid lägre saltintag beror på att, trots minst trefaldig ökning av natriumåterupptagande och blodtryckshöjande hormonerna aldosteron, angiotensin och renin, så sjunker blodtrycket på grund av natriumbrist i blodet som kompenseras med lägre blodvolym som sänker blodtrycket och ökar natriumkoncentrationen marginellt i blodet. Vid mer än 30 g salt så är blodtrycket lägre än vid 6-9 g salt på grund av att det inte behövs så mycket blodtryckshöjande hormoner för att få tillbaka tillräckligt av utsöndrade 1-2 kg salt i primärurinen.

Klinkemlab inom sjukvården anger i många fall 150-300 mmol som utsöndrad mängd salt i urinen per dygn. Genom att multiplicera mmol med molekylmassan av salt om 58,3 så blir det 9-18 g salt i urinen per dag.

EFSA har explicit skrivit att det saknas data för att sätta en övre gräns för begränsning av saltintaget. Det saknas därför underlag för Livsmedelsverket att sätta upp en övre gräns för saltintag.

NNR5 synes ha underlåtit att läsa de remissvar om salt som kom in i tid till NNR5 under 2012.

Det visar sig att många av de ”mer än hundra experter” som NNR5 hade städslat hade kopplingar och bindningar till livs- och läkemedelsindustrin.

Med andra ord bryter Livsmedelsverket mot 1 kapitlet 9 § regeringsformen genom att hävda att NNR5 baserar sig på vetenskap.

Genom att hålla fast vid nuvarande kostråd, som helt underkändes av SBU:s rapport Mat vid diabetes från 2010, bryter Livsmedelsverket även här mot Patientsäkerhetslagen, Hälso- och sjukvårdslagen, patientlagen och även mot grundlagen.

Hur länge tänker Livsmedelsverket fortsätta att bryta mot lag?

Det finns ett utmärkt och tillika lagligt alternativ kvar för Livsmedelsverket.

Det är bara att följa Socialstyrelsens beslut av 2008-01-16 att en lågkolhydratkost är i enlighet med vetenskap och beprövad erfarenhet. Till detta kommer nu ett större antal vetenskapliga artiklar som visar att animaliskt fett alltid har varit ofarligt, att kolhydrater är giftiga hos friska i högre dos än 100 g/dag, hos metabolt sjuka är kolhydrattåligheten ner mot 0 g per dag.

Så det är bara att göra som man fick lära sig i det militära:

GÖR OM! GÖR RÄTT!

Vänligen
Björn Hammarskjöld
Assisterande professor i pediatrik vid Strömstad Akademi


Varningstext Livsmedelsverket

Brev till Livsmedelsverket 2014-11-18

Hej Livsmedelsverket!


Det är kul att läsa vad som står i EUs papper
http://europa.eu/legislation_summaries/consumers/product_labelling_and_packaging/l21306_sv.htm
Där står bland annat
Hälsopåståenden är underställda särskilda krav. Märkningen, presentationen eller reklamen där de framförs måste innehålla följande uppgifter:
1. en uppmaning om vikten av en varierad kost och hälsosam livsstil;
2. den mängd livsmedel och det konsumtionsmönster som krävs för att få den gynnsamma effekten;
3. en uppmaning till de personer som bör undvika ämnet;
4. varning om vilka hälsorisker en överdriven konsumtion innebär.

Kul att det ska finnas en varning om vilka hälsorisker en överdriven konsumtion innebär.
Alla vet att ett P-glukos på mer än 30-50 mmol/L är en dödlig koncentration av glukos i blodet.
Det motsvarar att om man har mer än 15-25 g glukos i blodet är det en dödlig mängd glukos i blodet hos en 70 kg människa. Om man injicerar 5 g glukos direkt i blodet hos en 70 kg människa stiger P-glukos från normala 5 mmol/L till 15 mmol/L.
Livsmedelsverket rekommenderar att jag som man ska äta 480 g kolhydrater=glukos per dag. De flesta kolhydratkällor innehåller mestadels glukos eller glukospolymerer (oftast stärkelse) som snabbt kan brytas ned till monosackarider som glukos.
Med tanke på att Livsmedelsverket vill att jag ska äta en mer än 20-falt dödlig dos av glukos per dag måste denna rekommendation helt klart betraktas som överdriven konsumtion av kolhydrater.

Här kommer två frågor:
1. Varför saknar Livsmedelsverket krav på "3. en uppmaning till de personer som bör undvika ämnet;" då det gäller kolhydratinnehållande mat? Jag tänker då i första hand på personer med sockersjuka och fetma. Dessa måste äta betydligt mindre än 100 g kolhydrater per dag för att överleva och till och med må bra. Har man en kolhydratintolerans måste man låta bli att äta kolhydrater på samma sätt som en person med laktosintolerans låter bli att äta laktos eller en person med jordnötsallergi låter bli att äta jordnötter.

2. Varför saknar Livsmedelsverket krav på en "4. varning om vilka hälsorisker en överdriven konsumtion innebär" av kolhydrat kan orsaka i form av fetma, sockersjuka och död? Det är klart bevisat och
känt sedan de gamla egyptiernas tid 2 500 år FK att den som äter kolhydrater går upp i vikt och blir sjuk. Likaså påpekade Hippokrates samma sak för 2 400 år sedan, liksom Carl von Linné 1732 [1], Brillat-Savarin i Frankrike 1825 [2], William Banting i England 1865 [3], Julius Lagerholm i Sverige 1921, Gary Taubes i USA 2007 [4], Jörgen Vesti Nielsen i Sverige 2008 [5], Richard Feinman tillsammans med 25 andra vetenskapsmän 2014 [6].


Statens beredning för medicinsk utvärdering (SBU) fann i sin rapport 2010 Mat vid diabetes att det helt saknades vetenskap bakom Livsmedelsverkets kostråd.


Båda dessa tvenne frågor ska vara tvinganden måsten enligt EU. Men jag saknar att livsmedel rika på kolhydrater är märkta i enlighet med EU-reglementet.

Jag begär svar på mina två frågor 1. och 2. senast 2014-11-21 i enlighet med 1, 3, 4, 6, 7, 10, 15, 16, 17 och 20 §§ förvaltningslagen. Jag förutsätter att Livsmedelsverket kommer att följa 1 kapitlet 9 § Regeringsformen.
Vänligen
Björn Hammarskjöld
Assisterande Professor i pediatrik
Oberoende Senior Vetenskapsman i Nutrition
 
Referenser:

[1][1] C v Linné, Lappländska resa 1732

[1][2] Brillat-Savarin Le Physiologie du Gout 1825

[1][3] Banting A Letter on Corpulence 1865

[1][4] G Taubes Good Calories, Bad Calories Knopff, N.Y., N.Y. 2007

[1][5] J Vesti Nielsen Low-carbohydrate diet in type 2 diabetes: stable improvement of bodyweight and glycemic control during 44 months follow-up http://www.nutritionandmetabolism.com/content/5/1/14

[1][6] Feinman RD, Pogozelski WK, Astrup A, Bernstein RK, Fine EJ, Westman

EC, Accurso A, Frasetto L, McFarlane S, Nielsen JV, Krarup T, Gower BA, Saslow L, Roth KS, Vernon MC, Volek JS, Wilshire GB, Dahlqvist A, Sundberg R, Childers A, Morrison K, Manninen AH, Dashti H, Wood RJ, Wortman J, Worm N, Dietary Carbohydrate restriction as the first approach in diabetes management. Critical review and evidence base, Nutrition (2014), doi: 10.1016/j.nut.2014.06.011

 
 

Svar från och till Brödinstitutet

catarina.bennetoft@brodinstitutet.se skrev 2014-08-14 10:27:

Hej Björn,

Tusen tack för din synpunkter på pressmeddelande och hur mathållningen inom äldreomsorgen bedrivs. Vi tar naturligtvis dem till oss och jag vet att vi alla kommer arbeta med att förbättra matsituationen för våra äldre utifrån våra olika uppdrag.

Jag kan bara tala för brödet som är en resurs och inte en ersättare av hela måltider. Många äldre äter gärna bröd av vana och för att de tycker om smörgåsar eller då annan mat inte smakar av olika skäl. Då är det viktigit att smörgåsen bidrar med bra goda kolhydrater samt viktiga proteiner och fetter och samtidigt är mättande och enkel att göra. Vi vill påvisa den möjligheten i ett annars stort måltidspussel där inte bara maten är en viktig del för äldres hälsa utan också och kanske främst att få med de sociala bitarna i måltidsstunden.

Vänliga hälsningar

Catarina 

Catarina Bennetoft
Brödinstitutet AB
Storgatan 19
Box 55680
102 15 Stockholm
+ 46 8 762 67 95
+ 46 70 655 45 59
Catarina.bennetoft@brodinstitutet.se
www.brodinstitutet.se

Mitt svar kommer här 2014-08-15

Hej Catarina!

Tack för ditt vänliga brev!

Det är bra att ni tar till er mina gamla och välkända synpunkter men som ni hittills inte verkar ha någon kunskap om.

Det är välkänt att de gamla svälter på äldreboende och dör av sin svält. 

Detta innebär att de gamlas mat måste genomlysas. Kunskapen finns men vissa Ledande OpinionsBildare (LOB) synes antingen vara genuint okunniga alternativt verkar göra allt för att för att dölja kunskapen för omgivningen.

Ditt svar synes vara allmänna och bluddriga rundgångar och synes sakna alla former av ställningstagande och synes motsäga dig själv.

Exempelvis ditt ” Jag kan bara tala för brödet som är en resurs och inte en ersättare av hela måltider. Många äldre äter gärna bröd av vana och för att de tycker om smörgåsar eller då annan mat inte smakar av olika skäl..” 

Först skriver du att brödet är en resurs och inte ersättare av hela måltider. 

I nästa mening skriver du ”då annan mat inte smakar” vilket i min värld betyder att brödet ersätter hela måltiden. 

Uttrycket ”då annan mat inte smakar” visar på problemet, maten duger inte på grund av usel tillagning av usla råvaror med usel energitäthet. Brukar kallas processad mat. 

Då man på ett äldreboende lagar mat från grunden med bra råvaror och med tillräcklig energitäthet och energimängd äter de äldre och sjuka med god aptit och mår plötsligt bättre.

De äldre slipper helt plötsligt att svälta och mår bara därför bättre.

Att då Brödinstitutet har med sig Fazer är OK, det ena är branschorganisation Fazer är brödtillverkare. 

Men hur har ni fått med er Stig Orustfjord? Han är Livsmedelsverkets generaldirektör och han måste som myndighetsperson på en så kallad oberoende statlig myndighet städse följa Regeringsformens 1 kapitel 9 § .

Gick det till på samma sätt som på 1970-talet? En tjänsteman på Socialstyrelsen synes ha ringts upp och tillfrågades om hur mycket bröd man skulle äta. Tjänstemannen menade att bröd är bra och utfrågades hur mycket och fick en stödfråga "räcker 6-8 skivor bröd om dagen?” och fick ja på det. Sedan gick Brödinstitutet ut med informationen: ”Socialstyrelsen rekommenderar 6-8 skivor bröd dagligen”. 

Orustfjord synes genom sitt undertecknande av Brödinstitutets pressmeddelande gjort sig skyldig till brott mot Kungörelse (1974:152) om beslutad ny regeringsform 1 kapitlet 9 § både saklighets- och opartiskhetsrekvisiten. Han måste som generaldirektör för Livsmedelsverket ha varit medveten om den kunskap som jag presenterade i mitt brev av 2014-08-12 till Catarina Bennetoft, Brödinstitutet, Liza Rosén, Fazer AB, Stig Orustfjord, Livsmedelsverket och Ola Björeus Narverud, Ambea. (Brevet bifogat nedan och går även att läsa på http://kostkunskap.blogg.se/2014/august/brev-till-brodinstitutet-med-flera.html ) Om Orustfjord saknade den information/kunskap jag delgav honom av 2014-08-12 synes han ha felinformerats från sin egen myndighet. Då har Orustfjord två alternativ: 

1. Avgå med omedelbar verkan på grund av synbarligt bristande kunskaper och brott mot Kungörelse (1974:152) om beslutad ny regeringsform 1 kapitlet 9 § eller

2. Se till att hans myndighet skaffar sig kunskaper nog för att även Livsmedelsverket uppfyller Kungörelse (1974:152) om beslutad ny regeringsform 1 kapitlet 9 §.

Orustfjord synes i och med sitt undertecknande av Brödinstitutets pressmeddelande allvarligt skadat Livsmedelsverkets rykte som en myndighet som iakttar den svenska grundlagens synnerligen strikta krav på saklighet och opartiskhet. 

Vänligen
Björn Hammarskjöld
Assisterande professor i pediatrik
F.d. överläkare i pediatrik
Filosofie licentiat i biokemi
Oberoende senior vetenskapsman i nutrition
Ledamot i Nämnden för kostsamverkan mellan Landstinget Dalarna och Mora kommun
Sekreterare i DiOS

[1] Kungörelse (1974:152) om beslutad ny regeringsform

1 kapitlet 9 § Domstolar samt förvaltningsmyndigheter och andra som fullgör offentliga förvaltningsuppgifter ska i sin verksamhet beakta allas likhet inför lagen samt iaktta saklighet och opartiskhet. Lag (2010:1408).


Brev till Brödinstitutet med flera

Brev till Brödinstitutet som skrivit ett pressmeddelande om bröd till äldre

http://www.mynewsdesk.com/se/brodinstitutet/pressreleases/minska-undernaering-i-aeldreomsorgen-med-naeringsrikt-broed-1037379   

Hej Catarina Bennetoft, Brödinstitutet, Liza Rosén, Stig Orustfjord, Livsmedelsverket, Ola Björeus Narverud

Jag tackar för Brödinstitutets pressmeddelande av 2014-08-11.

Syftet med meddelandet är bra, våra äldre svälter vanligtvis på äldreboendet. Detta är uppmärksammat av Socialstyrelsen redan före år 2000 men tyvärr saknar Socialstyrelsens rekommendationer från den tiden och dess senare upplagor handfasta åtgärder som skulle säkerställa att de äldre får tillräckligt med mat.

Fortfarande 14 år efter Socialstyrelsens råd så får de äldre på boenden svältusla 1 650 kcal/dag inklusive smörgåsar.

Men att ge de äldre smörgåsar i stället för riktig mat är oförskämt mot de äldre! Det är dessa våra äldre som byggt upp vårt samhälle till vad vi har idag och som belöning får de en ren svältkost. Livsmedelsverket rekommenderar att kvinnor ska ha omkring 2 500 kcal/dag och män 3 200 kcal/dag. Sedan levererar älderboendet färdiglagad, smaklös mat med 350-400 kcal per lunch eller middag. Det motsvarar endast 31 % av vad en man ska ha till lunch eller middag enligt Livsmedelsverkets rekommendationer. 1 650 kcal per dag (synes vara normen bland boenden, även över minst 15 års tid) motsvarar 2/3 eller hälften av Livsmedelsverkets rekommendationer.

Ni skriver i pressmeddelandet följande:

     ”Stig Orustfjord, Generaldirektör på Livsmedelsverket, menar att verket måste följa med i tiden och bistå med rätt kunskap:

     – Vi ska använda de nordiska rekommendationerna som utgångspunkt och belysa dem ur ett bredare perspektiv. ”

Det vore ljuvligt om Livsmedelsverket och äldreboenden följer Orustfjords ord att ”[Livsmedels]verket måste följa med i tiden och bistå med rätt kunskap

Men att använda Nordiska näringsrekommendationerna som utgångspunkt har visats vara helt fel med kolhydratmängder långt överstigande 100 g per dag och högst 10 E% mättat fett.

NNR5 rekommenderar 50-60 E% kolhydrater vilket motsvarar 375-480 g kolhydrater per dag. Man måste också betänka att många äldre inte tål att äta kolhydrater, de ökar i vikt och kräver större doser insulin och andra läkemedel ju mer kolhydrater de äter. Patienter med sockersjuka ska enligt gamla tiders såväl som senaste kunskap [1], [2] äta högst 10-100 g kolhydrater = socker per dag, beroende på hur mycket de tål utan att få ett högre blodglukos.

För att ersätta energiförlusten från minskade kolhydrater ökar man därför mängden animaliskt fett i kosten med oförändrad proteinmängd. Personerna som äter denna kolhydratreducerade kost brukar vinna mycket i hälsa och välmående. Kosten är beskriven redan 1732 av vår främste vetenskapsman Carl von Linné i hans Lappländska resa och brukar på senare tid kallas för LCHF.

Det viktiga för de äldre är att kosten har en tillräcklig energitäthet om minst 3 kcal/g mat, annars orkar och hinner de inte äta upp maten. Livsmedelsverkets normalkost innehåller omkring 1 kcal/g mat vilket innebär att en man ska äta en tredjedels hink mat om dagen (3 200 g eller 3 200 mL eller 3,2 L(iter) mat).

 

***************************************************************

  Vidare skriver man *

     ”Kort näringsfakta om bröd

     Energikälla. Bröd är rikt på kolhydrater som är hjärnans viktigaste bränsle. För våra äldre är ett stort energiintag livsnödvändigt. ”

Detta påstående är fel.
Kolhydrater är synnerligen giftigt och mer än 25 g i blodet hos en 70 kg person är en dödlig mängd glukos. Hjärnan använder själv inget glukos som primärt bränsle. Detta beror på att alla celler i hjärnan har mitokondrier, energifabriker. Mitokondriernas enda bränsle är acetylcoenzym A (AcCoA) som levererar ättiksyra till mitokondriernas citronsyracykel. Då glukosnivån i blodet är normal (3-6 mmol/L) så använder hjärnan AcCoA från fett som bränsle tillsammans med syre (aerob förbränning). Men så länge det finns överskott på glukos hjälper hjärnan till att avgifta glukos i kroppen genom bryta ned glukos till AcCoA som sedan skickas till mitokondrierna.

Röda blodkroppar (RBC) saknar mitokondrier och måste därför använda en alternativ energikälla utan att använda syre. Det som finns är glukos som utan syre (anaerobt) bryts ned en för RBC speciell väg till mjölksyra. Annars skulle röda blodkropparna nalla av det syre som transporteras av RBC. Men det går åt 19 gram glukos för att ge lika mycket energi till röda blodkroppscellen som till en hjärncell som bryter ned 1 gram glukos via citronsyracykeln.

Allt detta står att finna i närmaste bok i fysiologi, biokemi.

Så våra äldre ska äta en energität kost baserat på animaliskt fett som innehåller 9 kcal/g fett medan bröd innehåller endast 2,5 kcal/g bröd. Så det behövs bara omkring 200-300 g fett per dag för att en äldre ska må bra, få tillräckligt med energi, vitaminer och mineraler fås via animaliska proteinkällor och en avpassad grönsaksmängd.

För att uppnå motsvarande mäng energi med bröd måste man äta 700-1 000 g bröd om dagen men då får man i sig 300-450 gram kolhydrater per dag vilket är en kropsskadlig dos glukos, långt över 100 g som visats att de flesta klarar att äta.

     ”Fett. Bröd har ofta rapsolja som fettråvara. Rapsolja innehåller en hög andel enkelomättat och fleromättat fett som ur hälsosynpunkt är att föredra.

Detta påstående är fel.
Animaliskt fett, som människan också består av, är perfekt anpassat till däggdjur. Har en korrekt smälttemperatur och en korrekt fettsyrasammansättning, samma som vi själva har. Fleromättade fettsyror av vegetabilisk typ innehåller oftast för mycket inflammationsdrivande och cancerframkallande [3] omega-6-fettsyror och ska därför minimeras i kosten.

     ”Järn. Bröd är en god källa till järn för de som har svårt att få i sig tillräckligt. Järn är ett mineral som är viktigt för inlärning och minne. En skiva grovt bröd ger lika mycket järn som en portion broccoli.”

Detta påstående är rätt.

    ”Fiber. Bröd är en viktig källa till det dagliga fibertintaget då det kan vara svårt att få de gamla att få i sig tillräckligt med grönsaker för att hålla magen igång och även motverka hjärt- och kärlsjukdomar.Fibrer i bröd ger också mättnadskänsla och underlättar kroppens blodsockerreglering. Många äldre lyckas inte få i sig tillräcklig mängd fibrer per dag.”

Detta påstående är fel.
Fibrer (framför allt hårda fibrer från spannmål) ger skavsår på tarmslemhinnan och ÖKAR risken för tjocktarmscancer [4]. Därför ska man minska mängden fibrer i brödet och maten, grönsaker i måttlig mängd (mindre än 400 g/dag) går bättre eftersom grönsaksfibrer inte ger lika stora slipskador på tarmslemhinnan.

     ”Vattenlösliga vitaminer. Bröd bidrar med vattenlösliga vitaminer B1, B2, niacin, folat och vitamin E som bland annat är viktiga för nerver, muskler, hud, hår och tarmar. De hjälper också till med ämnes- och näringsomsättningen. ”

Detta påstående är fel.
Bröd innehåller 1/10-1/100 av B-vitaminer jämfört med lever. Bröd saknar helt vitamin B12. Det är alltså mycket viktigt att äta riktig mat i stället för kolhydratstinna smörgåsar.

Jag rekommenderar därför att Brödinstitutet drar tillbaka detta pressmeddelande eftersom det innehåller för mycket faktafel

Vänligen
Björn Hammarskjöld
Assisterande professor i pediatrik
F.d. överläkare i pediatrik
Filosofie licentiat i biokemi
Oberoende senior vetenskapsman i nutrition
Ledamot i Nämnden för kostsamverkan mellan Landstinget Dalarna och Mora kommun
Sekreterare i DiOS



[1] Lagerholm, J. Hemmets Läkarebok, Fröleen & comp, 1921

[2] Feinman et al, Dietary Carbohydrate restriction as the first approach in diabetes management. Critical review and evidence base.  http://dx.doi.org/10.1016/j.nut.2014.06.011

[3] Wirfält E, Mattisson I, Gullberg B, Johansson U, Olsson H, Berglund G. Postmenopausal breast cancer is associated with high intakes of omega6 fatty acids. Cancer Causes Control. 2002 Dec;13(10):883-93

[4] Wasan et al Fibre-supplemented food may damage your health. Lancet 1996; 348;319-320


hyperinsulinism induces tubular sodium reabsorption

World Health Organization. The Global Burden of Disease:

2004 Update. Geneva, Switzerland: World Health

Organization, 2008.

 

World Health Organization. Global Status Report on

Noncommunicable Diseases 2010. Geneva, Switzerland:

World Health Organization, 2011.

 

 

” secondary to the intake of large amounts of grain, fruit, sugar and starch induces tubular sodium reabsorption.”

 

Yes, this is because every glucose molecule is surrounded by 190 water molecules. So then the glucose molecule surrounded by 190 water molecules need another 1.28 Na ions to maintain the sodium concentration of 141 mmol/L. So a high carbohydrate load in the body retains water that retains salt, not the other way around.


When the shit hits he fan

 When the shit hits he fan eller 

När skiten träffar fläkten eller 

Varför vi inte kan lita på rekommendationerna

 

Det har kommit en artikel i BMJ: ”Why we can’t trust clinical guidelines” av Jeanne Lenzer medical investigative journalist (BMJ 2013;346:f3830)

 

Det har gjorts många försök att begränsa jävsproblematiken då det gäller rekommendationer inom medicinen. Men man har aldrig lyckats. Dessa formella grupper med högt vetenskapligt anseende styrs av Key Opinion Leaders (KOL) eller på svenska, litet mer direkt och rakt på sak, Ledande OpinionsBildare (LOBbare).

 

En LOBbare har ofta en chefstjänst inom vården eller forskningen.

 

Detta gör att ett litet fåtal LOBbare kan styra stora delar av vården. Alla underhuggare måste följa LOBbarens direktiv, annars blir underhuggaren inte långlivad på den arbetsplatsen.

 

Låt oss se på Nordiska Näringsrekommendationers femte arbetsgrupp, NNR5. De uttalar sig med samma emfas och uttryck som alla andra LOBbbaregrupperingar med ”högt vetenskapligt anseende”.

 

I NNR5 har mer än 100 forskare arbetat under mer än de planerade två åren för att få fram riktlinjerna. Riktlinjerna skulle ha varit klara till mötet i Reykjavik i juni 2012. Först nu är den femte remissomgången ute, mer än ett års försening.

 

Men jävssituationen hos dessa forskare är intressant.

 

En dansk professor har bindningar till ILSI med flera producentorganisationer förklädda till forskningsinstitut samt uppgivna 10 bindningar till företag.

 

En finsk professor sitter i Swedish Nutrition Foundation, SNF, producentorganisation förklädd till forskningsinstitut. Han sitter också som chefredaktör för Food & Nutrition, den tidskrift som publicerar samtliga forskningsartiklar för NNR5. Food & Nutritions ägare är SNF. Samtidigt sitter han i NNR5 Working group, är expert i arbetsgrupperna Vitamin C, Obesity och Energy.

 

En svensk professor har visats sitta på minst 18 stolar läs http://kostkunskap.blogg.se/2013/june/de-kallas-lobbare.html

 

Här har jag bara skummat på ytan, tagit ett par exempel. Det finns mycket mer om de närmast incestuösa kopplingarna mellan många av forskarna/experterna i olika grupperingar inom Livsmedelsverket.

 

Varför finns då dessa LOBbare?

 

Varför kan dessa LOBbare inte ändra sig?

 

Det beskrevs så fint vid ett möte om geriatrik på Jungfruöarna 2013: ”Vi måste hålla oss till riktlinjerna inom vården för när skiten träffar fläkten vill vi alla kunna säga att vi bara gjorde som alla andra – även om alla andra gjorde ett dåligt jobb”.

 

Eller som man sade vid Nürnbergrättegångarna efter andra världskriget:

”Jag lydde bara order.”

 

Björn Hammarskjöld

Jävsutredare

 

 

 

 

Despite repeated calls to prohibit or limit conflicts of interests among authors and sponsors of clinical guidelines, the problem persists. Jeanne Lenzer investigates

 

BMJ 2013;346:f3830

http://www.bmj.com/highwire/filestream/649995/field_highwire_article_pdf/0/bmj.f3830.full.pdf

In 2004, newly issued cholesterol guidelines greatly expanded the number of people for whom treatment is recommended. A firestorm broke out when it was learnt that all but one of the guideline authors had ties to the manufacturers of cholesterol lowering drugs.39

Yet these and other guidelines continue to be followed despite concerns about bias, because as one lecturer told a meeting on geriatric care in the Virgin Islands earlier this year, “We like to stick within the standard of care, because when the shit hits the fan we all want to be able to say we were just doing what everyone else is doing—even if what everyone else is doing isn’t very good.”


Begäran om mat till skolelev och patienter

Här kommer en blankett för att elever och även patienter/vårdade inom vården få en korrekt kost.


I ATL stod i början av juni 2013 en artikel om att föräldrar lyckats få riktig mat som specialkost. 

http://www.atl.nu/lantbruk/svensk-mat-som-specialkost-i-skolan

ATL fixade sedan att finna det perfekta citatet:

”Vi tröttnade på att kommunerna serverar våra barn mat som vi skulle bli polisanmälda för om det var vi som producerade den.”

Så det är bara att kopiera det jag skrivit nedan och skicka till berörd offentlig förvaltning!

 

 

Begäran om mat

 

Av etiska skäl, miljöskäl och hälsoskäl begär vi att vårt barn

 

________________________________ född ______________ och är elev vid

 

_______________________________________ skola får mat enligt skollagens, Livsmedelsverkets, Socialstyrelsens samt Jordbruksverkets bestämmelser jämte Miljöstyrningsrådets baskrav.

 

Vi begär att skolan serverar vårt barn mat som svenska bönder som producerade maten slipper bli polisanmälda för.

 

Kosten ska enligt Skollagen vara näringsriktig [1]. Den enda kost som enligt Socialstyrelsens beslut om vetenskap och beprövad erfarenhet inom kostområdet är godkänd är en lågkolhydratkost [2]. Därför måste mängden kolhydrater begränsas till maximalt 100 g per dygn i enlighet med gammal beprövad forskning från 1900-talet [3].

 

Skollunchen bör enligt Livsmedelsverket innehålla 25-35 % av dagens energi. Därför får skollunchen innehålla maximalt 25-35 g kolhydrater.

 

Vad som serveras i övrigt bör följa Nordiska Näringsrekommendationers remissvar om kött, fisk och ägg samt animaliskt fett från mejeriprodukter och djurfett. Samtliga djurprodukter ska komma från miljöer som har uppfödnings- och djurhållningsregler som är minst lika omfattande som de svenska djurhållningsreglerna.

 

Grönsaker innehåller i stort sett enbart vatten samt smärre mängder kolhydrater, protein, fett, mineraler och vitaminer jämfört med animalisk mat [4]. Så grönsaker kan serveras utan tvång, vare sig uppåt eller nedåt.

 

 

 

Ort___________________________________   Datum 201__ - ____ - ____

 

 

 

______________________________________  ___________________________

Vårdnadshavare                                                     Vårdnadshavare

 

 

 

Ytterligare informationsbakgrund

Se baksidan


Begäran om mat

 

Ytterligare informationsbakgrund med referenser

 

Animaliskt protein innehåller samtliga livsnödvändiga proteinbyggstenar, aminosyror, i hög mängd. Mängden kött bör uppgå till minst 40 g protein per dag, det motsvarar minst 60 g kött eller fisk till lunchen

 

Vegetabiliskt protein saknar oftast tillräckliga mängder av livsnödvändiga aminosyror samt har låga mängder protein jämfört med animaliska proteiner. Växtdelar innehåller många gånger gifter för att skydda växten mot att bli uppäten av alla växtätare. Soja innehåller exempelvis växtöstrogener som kan påverka könsutvecklingen hos sojakonsumenten. Spannmål innehåller fytiner som förhindrar upptag av mineraler till kroppen.

 

För att få 14 g protein från exempelvis gurka med en femfaldig säkerhetsmarginal behöver man äta 8,75 kg gurka till lunch.

 

Animaliskt fett är nyttigt och saknar sjukdomsframkallande egenskaper [5]. Vi består till mer än 10 % av kroppsvikten av samma material utan att få sjukdomssymtom.

 

Vegetabiliska fetter som kan ätas kan komma från oliv-, raps-, palm- eller kokosolja samt i små mängder från linolja. Övriga vegetabiliska oljor har enligt forskning för stor halt av inflammationsdrivande och cancerframkallande fleromättade fetter av omega-6-typ [6].

 

Kolhydrater från spannmål och socker är giftiga om man äter mer än 100 g per dag utan insulin, eget eller tillfört via spruta. Kroppen drivs av ättiksyra från i första hand fett. Om man äter kolhydrater måste kroppen ställa om sin ämnesomsättning från fettförbränning till förbränning av kolhydrater nedbrutet till ättiksyra för att undgå att man dör i sockerförgiftning. Hos en 70 kg person så innehåller den totala blodmängden om 5,6 L endast 1,5-3,0 g glukos. Äter man 5 g kolhydrater så kan blodglukosvärdet stiga till 15 mmol/L. Tillför man snabbt mer än 25 g glukos till blodet så dör man i akut glukosförgiftning.

 

Livsmedelsverkets kostråd är helt underkända av Statens beredning för medicinsk utvärdering (SBU) i dess rapport från maj 2010 [7]. SBU fann att Livsmedelsverkets kostråd helt saknade vetenskaplig grund.

 

Livsmedelsverkets kostråd är rekommendationen på populationsnivå och får ej användas på individnivå . Livsmedelsverkets kostråd är därför olagliga att använda inom sjuk- och äldrevård, offentliga institutioner och därmed även inklusive skolan.

 

Mora den 17 juni 2013

Björn Hammarskjöld

F.d. överläkare i barn- och ungdomsmedicin

Filosofie licentiat i Biokemi

Oberoende senior vetenskapsman i näringslära



[1] Skolverket och Livsmedelsverket saknar definition av näringsriktig mat. Alltså måste man gå till gamla kunskaper i fysiologi, biokemi och endokrinologi från 1900-talet.

[2] Socialstyrelsens beslut av 2008-01-16 Dnr 44-112267/2005

[3] Julius Lagerholm, Hemmets Läkarebok, Fröléen & comp, Stockholm 1921

[4] Livsmedelsverkets matdatabas.

[5] Holmberg, Thelin High dairy fat intake related to less central obesity: A male cohort study with 12 years’ follow-up Scandinavian Journal of Primary Health Care June 2013, Vol. 31, No. 2 , Pages 89-94 (doi:10.3109/02813432.2012.757070)

[6] Wirfält, Mattisson, Irene (arbetar nu på Livsmedelsverket) et al Postmenopausal breast cancer is associated with high intakes of omega-6 fatty acids (Sweden). Cancer Causes Control. 2002 Dec;13(10):883-93.


NNR5 remissvar om matens sammansättning

Jag hann med att kommentera även matens sammansättning i NNR5
 
Nu väntar vi bara på att den sista remissomgången om fett och kolhydrater kommer ut under juni.
 
Men NNR5 remissen om mat här http://www.slv.se/upload/NNR5/NNR%202012%20FBDG.pdf 
 
Och här mitt svar tpå remissen. Det blev mycket struket och en del tillagt.
 

NNR 2012 –Foods, food patterns and health outcomes: Guidelines for a healthy diet

 

Public consultation answer

By

Björn Hammarskjöld

M.D., Ph.D. in Biochemistry

Independent senior scientist in nutrition

C.E.O. of Minivent AB

 

13.              Foods, food patterns and health outcomes - Guidelines for a

14.              healthy diet

15.               

16.               

17.               

18.              Introduction

19.               

Lines 37- 48 should be replaced with the following text.

 

Much new original data from both observational and experimental studies on the impact of foods, whole diets and food patterns on health have been published during the last centuries. Several reports, reviewing the scientific basis for linking food intake and food consumption patterns with chronic disease are available. This chapter mainly summarizes information from some hundred years ago.

 

The first scientific report of the food, food patterns and health outcomes from Nordic countries is from 1732 when Carl von Linné described the Sami diet and also the health outcome [1]. In his report he described vividly that the Sami had reindeer meat, reindeer milk, fish and fowl. In season the Sami had egg and berries. Linné described that the Sami in their sixties still could roam around in the mountains in contrast to the fat, breadeating farmers from Scania

 

To follow a diet is good for loosing weight and to avoid diabetes and obesity. There is no controverse which diet is the best. Already the old pig farmer knew how get a pig fat for Christmas. Just give the pig coarse milled grain, potatoes and some fat. NNR4 recommend coarse milled grain, rebranded fibre rich bread and fibre rich cereals, oil cooked potatoes, rebranded French fries/chips.  Also the Japanese Sumo wrestlers had a more than 1 400 year of experience in weight gain, eating 3.3 kg rice, 50 fat and 250 g meat per day.

 

NNR’s have more than 35 years of experience of the effect of an extreme high carbohydrate diet. The number of persons having diabetes is at least 397 548 persons on 2012-12-31 [2] That is an increase since 2006-12-31 of 79 649 cases. It’s an increase of 13 275 cases per year.

 

The obesity rate increase is similar. Just look at pony jumping shows. In 1990ies the girls were slender all of them. Nowadays, 25 % of those pony jumping show girls are, despite much harder physical training, overweight to obese.

 

So the NNRs have the perfect method, well proven during millennia, how to increase obesity and diabetes frequencies. Recommend extreme amounts of carbohydrates. 

 

The conclusion is obvious. The NNRs (a.k.a. pig fodder) generate obesity and disease including diabetes.

 

The modern pig farmer knows how to get a slender pig for Christmas. The pig has to eat protein and fat. Then the farmer adds enough carbohydrates for the pig to convert excess of carbohydrates to stored fat.

 

This is since millennia a wellknown technology and physiology.

 

 

Lines 57-162 should be replaced with the following text.

 

for which human requirements have been less well defined. The description of major food groups
and their nutrient contributions given below is largely based on information provided by the old fashioned physiology from previous centuries.

 

First of all we have to identify the essential components of the food for humans.

 

AcCoA is the central molecule in our metabolism.

We can make AcCoA from proteins via amino acid deamination.

We can make AcCoA from fats

We can make AcCoA from carbohydrates

We can use AcCoA as an energy source

We can use AcCoA to make amino acids

We can use AcCoA to make fats

We can use AcCoA to make some carbohydrates.

We can use AcCoA to make a lot of essential molecules like cholesterol

 

So AcCoA is THE kingpin molecule in our metabolism.

 

Among essential components of our food there are:

 

  1. protein or rather the amino acids, the building stones of proteins, are partly essential as humans can produce about ten of the 20 amino acids. This means that we have to eat the remaining amino acids to survive.
  2. Fats are essential as an energy source and as building material to convert different fatty acids to other fatty acids. Also, we have a very limited processing facility for the long chain polyunsaturated animal fats so they are regarded as essential. Most of the other fats we can synthesize from smaller fatty acids, mainly from AcCoA. But we have to have fat to be able to rebuild fat and for energy production.
  3. Minerals are essential as we can not produce elementary atoms.
  4. Vitamins are mostly essential. We are unable to produce most of them.
     

Carbohydrates are nonessential as humans can produce all necessary sugars in the liver in enough amounts.

 

The brain does have mitochondria in all cells and is thus using only AcCoA as fuel. But red blood cells (RBC) need 3-6 mmol/L glucose in the blood as they lack mitochondria. Then glucose is metabolized along a RBC specific pathway to degrade glucose via the Rapoport-Luebring pathway producing 2,3-diphosphoglycerate (2,3-DPG) and then to lactic acid and energy. The 2,3-DPG is required to release the oxygen from the haemoglobin molecule. So with a too low blood concentration of glucose the brain can not get enough oxygen to oxidize citric acid in the Krebs cycle. And there is a too low concentration of glucose for the brain cells to anaerobically produce energy from glucose. So the brain does die within minutes when the glucose level in the blood goes too low. 

 

Protein

Our protein sources are from animal or vegetable origin. We need at least 0,5 g animal protein per kg per day.

 

Our best sources of animal protein is from herbivores like cattle, elk, horse and other herbivores. Also, pig, fowl, fish, egg and game are animal sources of protein as well as fat.

 

Vegetable proteins are always deficient in one or more amino acids so we have to eat several times more vegetable protein to satisfy the needs of all amino acids.

 

Free ranging herbivores are excellent carbohydrate-to-fat-and-protein converters. They eat enough minerals and vitamins for their own needs. The only thing we have to do is to eat the meat and inner organs to satisfy all our needs regarding protein, fat, minerals and vitamins in perfect amounts.

 

Fat

Free ranging herbivores are excellent carbohydrate-to-fat-and-protein converters. The fat in most animal fat have the same composition, shy of 50 % saturated fat (SFA), shy of 50 % monounsaturated fat (MUFA) and about 5 % polyunsaturated fat (PUFA). So the best fat we can eat is animal fat as it is abut the same composition as our own fat stores. They all have the same melting temperature and thus we have to process the fats minimally to save energy.

 

The only fats that have been proven harmful are trans fats and PUFA of omega-6-type [3]. SAT fats and MUFA fats are harmless and essential.

 

Sources of food

The best sources of food are of animal origin like egg, meat, fish and milk. Then we get all we need of protein, fat, minerals and vitamins. And our liver can make all necessary carbohydrates.

 

Milk from ruminants is both a food in itself and raw material for different dairy products (like cheese, butter, fermented milk, yoghurt or cream). Milk and milk products are important sources of animal fat, protein, vitamin A, riboflavin, vitamin B12, calcium, and iodine. Fat soluble vitamins are often added to skim and low fat milk as the cows are not receiving enough sunshine to produce enough vitamin D3. Two thirds of the fat in whole milk is SFA but there are shorter SFAs to keep the melting temperature constant. The major unsaturated  fatty acid is oleic acid (C18:1). Milk also contains short chain fatty acids and the odd-chain fatty acids C 15:0 and C17:0. Fat content varies from 0.1 to around 4 g/100g, protein about 3.0-3.5 gram per 100 gram; and an animal carbohydrate (lactose) about 4-5 gram per 100 gram. Whole milk and low fat milk contain about the same amounts of calcium. Cheese has a high calcium content. It is shown several times that a high intake of dairy fat (butter as spread and high fat milk and whipping cream) was associated with a lower risk of central obesity (OR 0.52, 95% CI 0.33–0.83) and those children having full fat milk are not as obese as the children having low fat milk [4], [5].

 

So the drinkers and eaters of dairy products should have high fat milk and full fat butter to stay slim.

Egg is relative to its energy content high in protein, riboflavin, vitamin A and D. Egg is low in fat, and the egg yolk contributes together with dairy products, meat and fish to the dietary intake of cholesterol. One normal egg contains about 0,2 g cholesterol. An adult of 70 kg has about 200-400 g of cholesterol in the body. So the cholesterol amount of an egg may increase the total cholesterol by less than one tenth of a percent. The cholesterol in food is totally neglible, cholesterol in food can never alter the total amount of cholesterol, the amount is too tiny.

 

Meat from beef, pork, mutton and game (e.g. reindeer and moose) is generally defined as “red” meat, while meat from chicken and turkey are defined as “white”. Processed meat has undergone some preservation process like smoking; salting or use of other chemicals for preservation (likes nitrites). Examples of such processed meats are ham, bacon, salami, different kinds of sausages, and smoked meat. Meat that is boiled, fried, dried, fermented or frozen is usually not categorized as processed.

 

Meat and meat products contain 20-35 % protein, and are usually good sources of vitamin B6, vitamin B12, iron, zinc and selenium. The content of energy, fat, fatty acids and salt may vary  considerably between types. Fat content may vary from less than one per cent to more than 40%. Also, types of fatty acids vary between different animals; typical proportion of SFA is 30% in chicken, 35-40% in pork, and 40-55% in beef and mutton. The level of conjugated linoleic acid (CLA) is less than 1 % in chicken and pork, but 3-5% in ruminants (like beef and mutton). The salt content is low in raw, unprocessed meat but much higher in processed meat. Game meat usually has lower fat content.

 

Pure meat, fresh or preserved the way our ancestors did, has never been shown to harm. On the contrary, pure carnivorous people like Sami, Eskimoos, American Indians like the Pima Indians were totally healthy as long as they stuck to their traditional diet.

 

 

Fish and seafood contain 20-35 % protein. Lean fish like cod and plaice contain less than 2 grams of fat per 100 gram, medium fat fish like winter-mackerel and tuna contain 2-8 grams of fat per 100 gram, and fatty fish like herring, summer-mackerel, trout, salmon and eel contain more than 8 grams of fat per 100 gram. Medium fat and fatty fish are the major dietary sources of marine omega-3-fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Fatty fish is also a major source of dietary vitamin D, but some lean fresh-water fish (e.g. pike-perch) also contain high amounts. Fatty fish and especially cod liver contain high amounts of vitamin A (retinol). Fish and seafood are also good sources of vitamin B12, iodine and selenium. However, the nutrient content may vary between wild fish and farmed fish depending of the feed.

 

Fish and seafood may contain different environmental toxins. In general fish captured in the open sea has lower concentrations of pollutants than fish from the Baltic Sea or Norwegian fjords. Some marine fish, e.g. large tuna and halibut, and freshwater fish from certain areas may contain elevated levels of methyl mercury. Lean fish generally contain low levels of persistent organic pollutants (POPs). Finnish studies indicate that fish consumption is related to higher blood concentration of dioxins, polychlorinated biphenyls and methyl mercury, as well as of omega-3-fatty acids (Turunen AW, Männistö S et al. 2010). However, the lower mortality of cardiovascular diseases and type 2 diabetes among fishermen indicates that the benefits of fish consumption seem to overcome the potential hazards (Turunen, Verkasalo et al. 2008).

 

Pork fat in bacon has about the same amount of animal omega-3 fatty acids as fat fish like salmon when you compare the absolute amount, not percent. So we don’t have to empty the seas from fish to get enough animal omega-3 fats. There is another way to normalize the ratio of omega-6 PUFA to omea-3 PUFA. Decrease the intake of omega-6 to below cancer causing levels and intakes. 

 

 

Vegetables, fruits and berries usually contain low amounts of food energy, plenty of water and dietary fibre, small amounts of vitamins like ascorbic acid (vitamin C), carotenoids (pre vitamin A), folate, vitamin E (tocopherol) and vitamin K, and minerals like potassium and magnesium.

 

But fibres are irritating the intestines [6] and are cancer causing [7]. Fibres contain phytates that minimise mineral uptake [8]. Carotenoids are not degradable by humans to vitamin A.

 

Beans and peas are not very good sources of protein, minerals (iron, zinc, magnesium and potassium), B-vitamins (except B12). But beans and peas contain large amounts of fibre and starch, a.k.a. sugar, carbohydrates. So they may be eaten in small amounts.

 

Nuts and seeds contain plenty of monounsaturated (MUFA) and polyunsaturated fatty acids (PUFA) (as well as some vegetable protein, magnesium, zinc, copper, potassium, vitamin E, B6, niacin and several antioxidants). Nuts and seeds also contain large amounts of carbohydrates and intake should be minimized

 

Potatoes are comparatively rich in carbohydrates (starch), but is lower than meat in several minerals (like potassium and magnesium) and vitamins. Traditionally, potatoes were sources of vitamin C and protein among high consumers.

 

We need at least 0,5 g animal protein per kg per day. Vegetable proteins are always deficient in one or more amino acids so we have to eat several times more vegetable protein to satisfy the needs of all amino acids.

 

Carbohydrate intake in physiological amounts (less than 1 hg) are very low in vitamin C.

 

Wholegrain is defined as intact and processed grain or cereal where the fractions endosperm, bran and germ are present in the same proportion as in the intact grain. Cereals are to be eaten in low amounts as they contain very large amounts of carbohydrates in the form of polymerized glucose easily digested to glucose and thus increases the glucose level very fast in the blood. Grain, a.k.a. cereals, flour, especially wheat, contain large amounts of gluten.

 

The large increase of grain consumption during the last three decades may be the cause of IBS, gluten entropathy, morbus crohn, cholitis ulcerosa and “wheat belly”. All these diseases improve on a grain free diet and may even be states free from symptoms as long as the patient totally refrain from eating grain.

 

Whole grain products do provide fibers and contain phytates that minimise mineral uptake [9]. Resistant starch is a minor part of (less than 10 % of total starch) in cooked and hydrogenated starches and the amount is usually too low to make any difference at the blood glucose level.

 

Cereals, especially those that are processed into a variety of products, should be avoided as much as possible. Because micro-nutrients and other bioactive compounds mostly are very scarcely found only in the germ and bran fractions, refined cereal products generally have very low nutrient content, and often high amounts of added sugar (see below). They are often correctly called empty calories and should be avoided.

 

All plant foods (like vegetables, root vegetables, fruits, berries and nut and seeds, and whole-grains) naturally contain a wide variety of phyto-chemicals like polyphenols, salicylates, phytosterols, saponines, glucosinolates, monoterpenes, phytoeostrogenes, sulphides, terpenes and lectins. Most of these have important functions in the plant cells and may also negatively influence biological functions in the human body via a large number of defence mechanisms. Many are antioxidants with the potential to reduce the production of our own more efficient antioxidants, others may influence our signal systems, cell cycles, repair systems and inflammation reactions. The number of bioactive phyto-chemicals has been estimated to around 100,000. A single plant based meal may provide around 25,000 different phyto-chemicals, but luckily comparatively small amounts of each. The observed ill health effects associated with vegetable, fruit, berry and whole grain consumption may likely be explained by the combined action of many phyto-chemicals and other nutrients. All plants try to defend themselves from being eaten as they can not run away from a plant eater. That is why plants always have toxins.

 

So there are more than 100 000 reasons to minimize the food from the plant kingdom.

 

Butter and some vegetable oils are used in cooking and with small amounts of bread. Margarine, spreads and vegetable oils are used by the food industry to produce foods like mayonnaise, dressings, baked goods and soups. Vegetable oils are manufactured by pressing oil from seeds or plants like rapeseeds, olives, palm fruit and coconuts. But there is also oil manufactured by omega-6 rich soya beans, maize kernels, sunflower and safflower seeds.

 

Butter is made from the fat of cow’s milk. Margarine and spreads are mixtures of different fats. Milk fats and vegetable oils, margarine and spreads contribute dietary energy, fat (essential and non-essential fatty acids) and fat soluble vitamins (i.e., A, D, E and K). Vitamins A and D are usually added to margarines and spreads. Vegetable oils contain fat (100%), while margarines and spreads contain varying amounts of fat due to dilution of fat with water and chemicals. The fatty acids composition may vary considerably depending on the fat source used in manufacturing. Soy bean, maize and sunflower seed oil are rich in omega-6 PUFA, while rapeseed oil and especially olive oil is rich in MUFA. Rapeseed and soybean oils have comparatively high content of omega-3 fatty acids but soybean oil has too much omega-6 to be classified as human food. Vegetable oils and fat from marine sources, e.g. fish oils, contain a lot more unsaturated fatty acids than fat from land living animals, e.g. lard and tallow. However, palm and coconut oils have high content of SFA. Fish oils as well as lard are generally rich in very long animal omega-3 PUFA. Fat from ruminants, e.g. tallow, have the same content of SFA, and animal fats contain tiny amounts of cholesterol. Butter and ruminant fat contain 3-5% CLA. Processed fats like margarines and spreads were previously sources of TFA, depending on the raw material used in manufacturing. However, the TFA content has during the last decade decreased considerably in the Nordic countries due to changes in raw material and processing. But still most of the vegetable oils are cheap but unhealthy. Then choose palm, coconut, canola (rapeseed) or olive oils when you choose an oil. All other oils contain much too high amounts of inflammatory and cancer causing omega-6.

 

Lines 170-260 should be replaced with the following text.

 

Energy dense and ultra-processed food products

 

Many food products in Westernized societies are manufactured from refined cereals/white bread and with additional sugar. Biomarker studies have demonstrated that Westernized dietary patterns are associated with extremely high carbohydrate concentration and low concentrations of micro-nutrients (Kant 2010) (Román-Viñas, Ribas Barba et al. 2009), and will likely provide less of other health enhancing substances found in plant-foods. The energy content is increased mainly as carbohydrates and disproportionate to the content of natural and essential animal protein, animal fat, vitamins and minerals and to other bio-active substances of health importance in ultra-processed food products (e.g. soft drinks, confectionary, candy bars, desserts, bakery goods, sugared cereals, sugared milk-products, powdered sauces and soups, snacks, deep-fried potatoes et cetera). Many refined and processed foods may also contribute components with potential adverse health effects, added during the manufacturing process (e.g. carbohydrates), or formed during prolonged heat treatment (like heterocyclic amines or so called advanced glycation/lipidoxidation end-products, AGE/ALE). Studies within EPIC (European Prospective Investigation into Cancer and Nutrition) indicate that the use of manufactured food products currently (i.e., data collected in the 1990s) is higher in northern and central European countries than in Mediterranean countries (Slimani, Deharveng et al. 2009) (Chajès, Biessy et al. 2011).

 

 

The health impact of specific foods

 

Observed associations between single nutrients and health outcomes may be difficult to interpret, because of the complexity of diet. Also, diet-related chronic diseases are caused by carbohydrates, especially fructose [10], and also excess of omega-6 rich oils [11]. Therefore a search for the health effect of single nutrients may be misleading (Slattery 2010) (Jacobs Jr and Tapsell 2007) (Appel 2008). In recognition of these complexities we have to revert to old fashioned physiology, biochemistry and endocrinology instead of reading biased research from the last decades.

 

As stated above, animal protein, animal and a few vegetable fats are essential. Carbohydrates, especially glucose, very quickly increases the blood glucose level which triggers a fast insulin response for the person to survive the massive glucose challenge. The old fashioned physiology tells us that a 70 kg person has 3-6 mmol/L or 1,5 to 3,0 grams of glucose in the whole blood volume. Having just 5 g glucose will rise the blood glucose level from 5 mmol/L to 15 mmol/L. If that person has more than 30 mmol/L - 50 mmol/L or 15-25 g glucose in the blood, that amount of glucose is lethal.

 

Then NNR4 recommends that male person to eat 480 g of carbohydrates per day, a more than 20-fold lethal dose of carbohydrates per day.

 

Fructose is 5-10 times more efficient to nonenzymatically glycate proteins than glucose. The most well known Advanced Glycated Endproduct (AGE) is HbA1c where glucose or fructose attaches to the lysine residue of haemoglobin. This sugar molecule sterically blocks the oxygen to attach to the haemoglobin molecule. Thus a high blood glucose level increases the HbA1c. Fructose is much more efficient in blocking oxygen transport. But we never measure the fructose level in blood so usually we have not a clue how much fructose there is in the blood.

 

Another problem is that fructose normally is metabolized in the liver to saturated fatty acids and increases the rate of non alcohol fatty liver disease (NAFLD) and even non alcohol fatty liver cirrhoses (NAFLC).

 

Excess carbohydrates are converted to SFA and stored in the fat depots and locked up by the high insulin levels.

 

Several studies have shown a long time weight reduction by limiting only the carbohydrates [12], [13].

 

There is no convincing evidence that consumption of milk or dairy products is related to increased risk of cardiovascular disease (Beck, Hoppe et al. 2010; Nasjonalt råd for ernaering 2011). However, studies have shown that high animal fat intake decreases the obesity rate of children [14], [15].

 

Some reports indicate that milk consumption is related to a reduced risk of metabolic syndrome, type-2 diabetes, hypertension and stroke (Beck, Hoppe et al. 2010; Nasjonalt råd for ernaering 2011). The WCRF/AICR (2007) concludes that milk consumption probably reduce the risk of colorectal cancer. No conclusion can be made on the link between milk and breast cancer.

 

 

Lines 263-554 should be replaced with the following text.

 

Macronutrients, foods and weight maintenance

 

The old fashioned physiology, biochemistry and endocrinology implies that carbohydrates are toxic to us in larger amounts than 100 g per day in metabolically healthy individuals and may reduce the symptoms in metabolically deranged persons like metabolic syndrome, diabetes and overweight/obesity.

 

Still, carbohydrates increase the blood glucose level that increases the insulin response that increases the fat deposition in fat tissue. Increased level of insulin also halts fat metabolism.

 

Animal protein is not giving a weight gain according to all old studies from previous centuries.

 

Animal fat and selected vegetable fats do not increase the blood glucose level and insulin which means fat are not making us fat, fat is making us satisfied for long.

 

Just reread the old books in physiology, biochemistry and endocrinology. Those old books reveal the truth about metabolism.

 

 

Lines 556-564 should be replaced with the following text.

Conclusion

 

The overall scientific evidence show that the old fashioned physiology, biochemistry and endocrinology still rules.

 

As long as humans eat their species specific food as carnivores with normal amounts of animal protein, an enough amount of animal fat and a very limited ability to eat carbohydrates, the individuals as well as the populations will keep healthy.

 

Just look at a newborn human baby. Human breast milk has evolved for millennia to be

the ultimate food for babies. The milk is diluted to ensure that all children, regardless of living in arctic region or tropical region, will have enough water. The amount of animal protein, 8 percent of total energy (E%), is enough for a newborn child to increase 50 % in length during the first year. The amount of carbohydrates, 36 E% of animal carbohydrates a.k.a. lactose, is enough for a newborn child to increase 300 % in weight during the first year. The amount of animal fat, 56 E% of animal fats, is enough for a newborn child’s brain to develop normally during the first year.

 

The same conditions apply for adults. So just decrease the amount of carbohydrates to a level that does give the endocrinological condition of normal low insulin response to stay healthy and keep the normal body weight.

 

 

 



[1] C. v. Linne, Linnés lappländska resa, 1732

[2] Socialstyrelsen’s statistical database downloaded 2013-06-02

[3] Wirfält, Mattisson, Irene (presently at Livsmedelsverket) et al Postmenopausal breast cancer is associated with high intakes of omega6 fatty acids (Sweden). Cancer Causes Control. 2002 Dec;13(10):883-93.

[4] Holmberg, Thelin High dairy fat intake related to less central obesity: A male cohort study with 12 years’ follow-up Scandinavian Journal of Primary Health Care June 2013, Vol. 31, No. 2 , Pages 89-94 (doi:10.3109/02813432.2012.757070)

[5] S. Eriksson a,*, B. Strandvik Food choice is reflected in serum markers and anthropometric measures in healthy 8-yr-olds e-SPEN, the European e-Journal of Clinical Nutrition and Metabolism 5 (2010) e117ee124

[6] Miake K, et al. Disruption-induced mucus secretion: repair and protection. PLoS Biol 2006; 4: e276

[7] Wasan HS, Goodland RA. Fibre-supplemented foods may damage your health. Lancet 1996;348:319-20

[8] Sandstead HH Fiber, phytates and mineral nutrition. Nutr Rev 1992; 50: 30-31

[9] Sandstead HH Fiber, phytates and mineral nutrition. Nutr Rev 1992; 50: 30-31

[10] Robert H. Lustig, Laura A. Schmidt, Claire D. Brindis,Public health: The toxic truth about sugar. Nature 2012; 482: 27–29 doi:10.1038/482027a

[11] Wirfält, Mattisson, Irene (presently at Livsmedelsverket) et al Postmenopausal breast cancer is associated with high intakes of omega6 fatty acids (Sweden). Cancer Causes Control. 2002 Dec;13(10):883-93.

[12] W Banting, A letter on corpulence, 1865, London

[13] J Vesti Nielsen, A Jönsson, Low-carbohydrate diet in type 2 diabetes: stable improvement of bodyweight and glycemic control during 44 months follow-up. Nutrition & Metabolism 2008, 5:14 doi:10.1186/1743-7075-5-14

[14] Holmberg, Thelin High dairy fat intake related to less central obesity: A male cohort study with 12 years’ follow-up Scandinavian Journal of Primary Health Care June 2013, Vol. 31, No. 2 , Pages 89-94 (doi:10.3109/02813432.2012.757070)

[15] S. Eriksson a,*, B. Strandvik Food choice is reflected in serum markers and anthropometric measures in healthy 8-yr-olds e-SPEN, the European e-Journal of Clinical Nutrition and Metabolism 5 (2010) e117ee124


NNR5 och kalcium, remissvar

Här är NNR5 kalcium remissvar.
 
Remissen finns här http://www.slv.se/upload/NNR5/Calcium%20NNR%202012.pdf 
 
Mitt svar 

NNR 2012 –Calcium

 

Public consultation answer

By

Björn Hammarskjöld

M.D., Ph.D. in Biochemistry

Independent senior scientist in nutrition

C.E.O. of Minivent AB

 

 

Introduction 42

 

Lines 50- 55 should be replaced with the following text.

 

half is bound to albumin. Parathyroid hormone and 1,25(OH)2D are the most important hormones in the regulation of calcium homeostasis. They contribute to maintenance of constant calcium concentration in plasma by regulating the influx and efflux of calcium in intestine, bone and kidney. Maintenance of a constant concentration of ionised calcium is of vital importance and calcium homeostasis is probably the most tightly regulated homeostatic mechanism in the body

 

Lines 77- 79 should be replaced with the following text.

 

or by an active energy requiring process. The latter is dependent on the action of 1,25-dihydroxyvitamin D3 (1,25(OH)2D), the hormonal form of vitamin D. Calcium absorption

is thus decreased in vitamin D deficiency. This means that we can not increase the uptake of calcium unless we have at least the physiological level of at least 125 nmol/L. See the Public consultation answer on Vitamin D3. The difference between dietary calcium and that

 

Lines 100- 462 should be replaced with the following text.

 

(Guéguen et al. 2000). The net calcium absorption in infants is reported to range from about 30 % to 60 %, and between 25-40 % in older children, depending on absolute intake (Abrams 2010). The net absorption is relatively high during puberty (found to be about 34 % on an intake of 925 mg/d (5)) and then declines to 25-20 % in adulthood and even lower at advanced age (Guéguen et al. 2000; Schaafsma 1997). This indicates that the amount of net absorption is about 300 mg per day independent of the oral intake.

 

Calcium is lost from the body via faeces, urine and skin. Non-absorbed calcium is lost with faeces. In adults on intakes of about 1000 mg the loss amounts to about 70 to 80 % of the intake. This indicates that the amount of net absorption is about 300 mg per day independent of the oral intake. An appreciable amount is excretes via faeces as calcium soaps. Loss via skin and sweat is generally small, about 20-50 mg/d (6,7). Under warm conditions or high physical activity the loss may be appreciably greater.

 

Loss via urine may vary appreciably from person to person, generally between 100 and 400 mg/d in adults, but is relatively constant within individuals even if the intake varies. In the balance study by Malm (1) the urinary loss decreased from 231 to 201 mg/d (not significant) upon reduction of the intake from 940 mg/d to 450 mg/d. This experiment shows that a decrease of calcium intake is independent of the intake as long as the intake is higher than the uptake/urinary excretion and that the level of vitamin D3 is above 125 nmol/L. The calcium balance is very tightly regulated as long as the intake exceeds urinary excretion. The intestinal uptake is limited to 100-400 mg per day and the blood level of calcium is very tightly regulated by a free urinary excretion and a regulated uptake from the primary urine, again with a little help from my friends vitamin D3 derivates [1] So the intestines regulate the uptake of calcium and serum level is very tightly regulated by the kidneys as any excess is excreted.

 

Lines 464- 618 should be replaced with the following text.

 

Requirement and recommended intake

 

The old fashioned physiological, biochemical and endocrinological knowledge shows us that the calcium intake, uptake and excretion is strictly regulated in the body.

 

By eating more calcium than excreted in the urine and that the level of vitamin D3 is above the physiological level of 125 nmol/L the body will maintain calcium homeostasis.

 

The minimum intake of 500 mg calcium applies to all ages and sexes and is then ample for most individuals as long as the level of vitamin D3 is above the physiological level of 125 nmol/L.

 

Lines 619- 621 should be replaced with the following text.

 

Reasoning behind the recommendation  

The recommendations for calcium are maintained and can be decreased in NNR 2012 since no strong scientific evidence to change has emerged. This is under the condition that the level of vitamin D3 is above the physiological level of 125 nmol/L.

 



[1] Johnson JAKumar R. Vitamin D and renal calcium transport. Curr Opin Nephrol Hypertens. 1994 Jul;3(4):424-9.


Vitamin D3 till NNR5

Här kommer mitt remissvar till NNR5 rörande vitamin D3.
 
Det blev en hel del ändringar.
 
Läs remissen här http://www.slv.se/upload/NNR5/Vitamin%20D%20NNR%202012.pdf 
 
Mitt remissvar 
 

 Vitamin D – NNR 2012 Public consultation

By

Björn Hammarskjöld

2013-06-02

 

Vitamin D

50

 

Line 51-52 should be replaced by the following table

 

Recommendation table

Vitamin D3                                                                                  

Age group                            Minimum µg/d        Maximum µg/d

Recommended intake               RI

Children below age 10                    75 µg                       250 µg

Children above age 10                  125 µg                       500 µg

Adults                                           125 µg                       500 µg

Pregnancy and lactation                 250 µg                       500 µg

Elderly                                          125 µg                       500 µg

Average requirements             AR        125 µg                       500 µg

Lower intake level adult            LI        125 µg

Upper intake level                                                                500 µg

 

 

 

 

Line 53 to 64 should be replaced by the following text

Introduction

 

Vitamin D3, a seco-steroid hormone, is a prehormone essential to animals including man. The existence of a substance now named vitamin D is reported to have been known since early antiquity. The first scientific description of rickets as a deficiency was reported in the 17th century by Dr. Daniel Whistler (1645) and Professor Francis Glisson (1650).

 

Nutrition was acknowledged as an experimental science in the period 1910th – 1930th and one of the major breakthroughs in the science of nutrition was the understanding of the causative factors of rickets and the development and the appreciation of the existence of vitamins [1].

 

Traditionally, vitamin D3 is regarded as an anti rickets vitamin that is used exclusively to prevent rickets and osteoporosis. Recent research has shown that most cells in the body has Vitamin D Receptors (VDR) in the plasma membrane as well as in the cellular nuclei and that there are several hundreds of cellular reactions that are vitamin D3 dependent [2]. Also, vitamin D3 has a profound involvment in the immune systems, the endocrinological systems and a lot of other vital systems in the body [3]. Vitamin D deficiency has been linked to inflammatory and long latency diseases, such as multiple sclerosis, rheumatoid arthritis, lupus, tuberculosis, diabetes, cardiovascular disease, and various cancers, to name just a few.

 

The view of regarding vitamin D3 as a calcium regulator and rickets preventer only is an oversimplification and disregarding of true and modern science. The authorities have to have a better knowledge basis otherwise we are unable to make any decisions.

 

 

Line 67 to line 76 should be replaced by the following text

Normal levels of vitamin D3 in the blood.

 

There has been much debate about the normal level of the vitamin D3. Clinical chemical laboratories in Sweden usually defines less than 25 nmol/L as vitamin D3 deficiency, 25-75 nmol/L as vitamin D3 insufficiency, 75-250 nmol/L as optimal level of vitamn D3 and more than 250 nmol/L as potentially toxic level of vitamin D3 [4].

 

Line 77 should be replaced by the following text:

 

Physiological level of vitamin D3

There has been large debates over the physiological level of vitamin D3.

 

It is quite simple in reality.

 

There are several reports supporting that there is a linear relationship between intake of vitamin D3 and level of vitamin D3 in the blood.

 

When you increase the intake by 10 µg then the level of vitamin D3 will increase by 10 nmol/L, there is a linear relationship [5]. Also, lactating women need to have 125 nmol/L to give enough vitamin D3 in the breast milk to her baby. Parathyroid hormones are elevated when the vitamin D3 level is below 125 nmol/L. Darked skinned people living in the sun of Africa usually have a vitamin D3 level of 125-250 nmol/L

 

This shows that the physiological level of vitamin D3 is more than 125 nmol/L and that levels below 125 nmol/L must be considered as deficiency.

 

This means that the clinical chemical laboratories have to change their normal values as well.

 

Toxicity

Brohult and Jonsson showed in the beginning of 1970th that 2 500 µg vitamin D2/day for one year was without any toxic symptoms [6].

 

All toxic incidents but one is showing very large doses of vitamin D2, not vitamin D3

 

1 000 µg daily to infants gave toxicity in one to four months [7]. That is equal to 25 000 µg/day (1 000 000 IU) to an adult.

 

In Finland in 1950th up to 1964 they recommended giving 125 µg to newborns without any symptoms of toxicity [8]. 125 µg to a newborn of 2,8 kg is equivalent to 3 125 µg to a 70 kg adult per day.

 

In USA there was an accidental oversupplementation of Vitamin D in milk in the middle of 1990. The dose was up to 6 000 µg/day for half a year. The researcher found no signs of toxicity [9]

 

There are differences between vitamin D3 (animal vitamin D3 or cholecalciferol) and vitamin D2 (vegetable vitamin D2 or ergocalciferol) [10]

 

In 2008 G Jones [11] showed that an upper level of 750 nmol/L is safe.

 

In Poland the recommendation is vitamin D3 at 2,5 µgkg bodyweight, equals an adult dose of 175 µg to an adult [12].

 

In Sweden NNR4 recommends infants to have 10µg/day which equals an adult dose of 250 µg/day.

 

There is scientific information by R Vieth [13] from 1999 where the recommendation is t least 125 µg per day and a toxic dose is estimated to more than 1250 µg per day.

 

 

This means that the tolerable upper level of vitamin D3 intake is safe by a factor of at least 2, maybe a safety factor of 8, when the daily intake is below 3 500 µg/day or 50 µg*kg-1*day-1 (or 140 000 IU per day or 2 000 IU per kg and day).

 

Line 96-98 should be replaced by the following text

 

Vitamin D3 status in Nordic populations

According to various reports the majority of the populations in many countries have levels of vitamin D3 below the “optimal” level of minimum 75 nmol/L [14], also found in Norway by NNR5 and in Sweden [15]. But there are no reports of vitamin D3 levels below the higher physiological level of 125 nmol/L. This is embarrassing as there must be an even larger proportion of the populations that are deficient I vitamin D3. Also, the levels of vitamin D in Norway is shown to be too low, just 40 nmol/L [16]

 

 

A Finnish study giving 50 µg to newborns in 1966 reduced the incidence of diabetes type 1 by 78 % up to 30 years after birth [17]. 50 µg to a newborn of 2,8 kg is equivalent to 1 250 µg (or 50 000 IU) vitamin D3 per day to a 70 kg adult.

 

It should be remembered that the Finnish authorities in 1964 had changed the previous recommendations of 125 µg vitamin D3 from 1950th down to 50 µg per day. The recommendations previous to 1964 is equivalent to 3 125 µg (or 125 000 IU) vitamin D3 per day to an adult.

 

Now, since the Finnish recommendation was reduced to 10 µg in 1996, the number of patients with diabetes type 1 has soared in Finland.

 

 

Line 148 should be replaced by the following text

 

Summary

In most of the recent studies the results are indicating that the majority of the Nordic populations are severely deficient in vitamin 3.

 

The results of the present deficiency we are starting to see in increasing rates of diabetes type 1, multiple sclerosis, rheumatoid arthritis, lupus, tuberculosis, diabetes type 2, cardiovascular disease, and various cancers, to name just a few.

 

 

Lines 154-155 should be replaced by the following text

 

factors such as skin surface exposed, season, latitude. Dermal
production of vitamin D3 is not affected by pigmentation. [18].

 

But the production of vitamin D3 is negatively correlated to the baseline vitamin D3 level so those with a low vitamin D3 level synthesises more vitamin D3 than those with a higher vitamin D3 level. Those with a higher S-cholesterol had a higher synthesis rate than those with a lower S-cholesterol level.

 

24 % body surface irradiated with 1.1 J/m2 10 minutes every two to three days with a total irradiation time of 40 minutes gave a mean increase of 25 nmol/L.

 

Taking in account that the half life of vitamin D3 is one to two months then the level of vitamin D3 should be well above the physiological 125 nmol/L at the beginning of autumn/fall. Otherwise the supplies formed during summer sun exposure will be insufficient during winter and spring until the summer sun can replenish the supplies.

 

 

Lines 203-204 should be replaced by the following text

 

Supplements

 

The recommended level of vitamin D3 as more than 125 nmol/L is difficult to reach on food alone. The best source of vitamin D3 is the UVB-rays of the sun. The problem with the sun’s UVB-rays is that the sun has to be at least 35º above the horizon for the UVB to penetrate the dense atmosphere at sea level to reach the skin. At a lower inclination angle the UVB-rays are absorbed by the atmosphere and can not induce the synthesis of vitamin D3 from cholesterol. So the UVB is producing vitamin D3 only about 2-3 months before and after the summer solstice here in the Northern latitudes. The rest of the year the population has to rely on enough vitamin D3 acquired during the summer or on enough vitamin D3 in food and vitamin D3 supplementation.

 

The amount of vitamin D3 in fortified milk is 0.45 µg/dL. This means that you have to drink 277 dL milk per day. This will mean 12 500 kcal per day to obtain 125 µg vitamin D3 per day.

 

Also eating fish, salmon, then it’s necessary to eat 10 hg salmon per day to reach 125 µg

 

This means that you have to be out in the sun at least 1 h every day during summer without sunscreen or covering clothes or have a vitamin D3 supplement with at least 125 µg vitamin D3 per day year around.

Line 211 should be replaced by the following text

 

with 50 µ/d. This indicates that also children of any age must have supplement of at least 125 µg of vitamin D3 to reach the physiological level of at least 125 nmol/L.

 

 

Line 258 should be replaced by the following text

 

There seem to be a nice linear relationship between supplements of the number of µg giving about the same number of nmol/L in serum/plasma.

It should be remembered that the level of vitamin D3 on serum/plasma does not mirror the total amount of vitamin D3 in the storage volume of fat as we do not measure the concentration of vitamin D3 in fat or other tissues. This implies that obese persons will need a higher intake than lean persons until the fat tissue is saturated with vitamin D3. Then the obese person can revert to normal amounts of supplements or sunshine. We should always remember that the homeostasis in the body always will keep the body within normal limits unless we disturb the homeostasis due to sheer ignorance and maltreatment.

 

 

Lines 273-276 should be replaced by the following text

 

osteomalacia in adults.

 

By solely focussing on vitamin D3 and bone health is a way to simplify and disregard the last decades of scientific research. We now know that vitamin D3 is indeed vital to maintain general health and that a physiological level of at least 125 nmol/L is important to breast feeding and to prevent and even treat diseases like diabetes type 1, multiple sclerosis, rheumatoid arthritis, lupus, tuberculosis, diabetes type 2, cardiovascular disease, muscle strength and various cancers, to name just a few.

 

We now know that most cells are having VDRs both at membrane levels as well as nuclear levels. This means that we do need vitamin D3 in much higher concentrations and doses than previously assumed.

 

 

Lines 279-340 should be replaced by the following text

 

Most studies regarding vitamin D3 and mortality compares placebo (no vitamin D3 supplement) with a tiny supplement (5-40 µg) of vitamin D3 and extra calcium. You can not see any differences when you compare almost nothing with almost nothing. Previously it is shown that the physiological level of vitamin D3 is at least 125 nmol/L which means that the minimal supplement amount should be at least 125 µg of vitamin D3.

 

Most studies regarding vitamin D are using vitamin D2 (ergocalciferol). Erocalciferol is a vegetable vitamin D analogue that is not working in animals except competitively blocking the VDR thus preventing vitaminD3 (cholcecalcferol) reacting with the VDR. Also, vitamin D3 can react with sulphate thus improving the transport of vitamin D3-sulfate through cellular membranes by a factor of about 300 times [19]. Ergocalciferol can (luckily) not react with sulfate. The effect of ergocalciferol on bone health is described a hundred years ago when the knowledge was less than now. But ergocalciferol is toxic at lower levels than vitamin D3 [20].

 

What is shown is that low levels of vitamin D3 increases the mortality rate.

 

 

Lines 350-420 should be replaced by the following text

 

A too low serum 25(OH)D3 concentration increase the risk of rickets and increase the level of parathyroid hormone. As long as the level of parathyroid hormone is above normal range is just one of several indicators of vitamin D3 deficiency. This is just one more indicator of the physiological level of 125 nmol/L o vitamin D3.

 

To try to establish a specific “fracture prone level” is just another attempt to disregard the power of homeostasis. Just follow the physiological level of vitamin D3 and there are no worries. Falls are decreased and muscle strength is improved when the level of vitamin D3 is above the physiological level of 125 nmol/L.

 

 

Lines 497-502 should be replaced by the following text

 

In Finland it is shown that an intake of 125-50 µg per day to infants was giving a very low incidence of diabetes type 1 [21]. When the vitamin D3-supplementation decreased in 1975 to 25 µg and in 1992 to a meagre 10 µg then diabetes type 1 has soared

 

 

Lines 505-517 should be replaced by the following text

 

Vitamin D deficiency impairs insulin secretion and induces glucose intolerance. Several vitamin D related genes are associated with different pathogenetic traits of the disease [22].

 

 

Lines 526-550 should be replaced by the following text

 

A previously known already known in 1947 Obermer recommended: “Until further experimental evidence, adequate and incontrovertible, is made available, I submit that we should play for safety. In a climate like that of England every pregnant woman should be given a supplement of vitamin D in doses of not less than 10,000 IU per day in the first 7 months, and 20,000 IU (per day) during the 8th and 9th months.” [23]

 

Hiherto, there are no experimental evidence, adequate and incontrovertible, is published.

 

The conclusion is that pregnant women should have 250-500 µg per day to have the physiological level of at least 125 nmol/L. This secures that the child will have enough vitamin D3 via the mother’s breast milk.

 

 

Lines 552-576 should be deleted. Duplicated information in lines 350-420

 

 

Lines 580-585 should be deleted. Duplicated information in lines 273-276

 

 

Lines 593-767 should be replaced by the following text

 

The NNR5 finds it easy to establish a physiological level of at least 125 nmol/L of vitamin D3 as shown above.

Pregnancy and lactation

E. Obermere, a British gynaecologist, issued in 1947 the following statement [24]: “Until further experimental evidence, adequate and incontrovertible, is made available, I submit that we should play for safety. In a climate like that of England every pregnant woman should be given a supplement of vitamin D in doses of not less than 10,000 IU per day in the first 7 months, and 20,000 IU (per day) during the 8th and 9th months.”

 

This is equal to 250 µg per day during the first 7 months of pregnancy and 500 µg per day the last two months of pregnancy. No experimental evidence, adequate and incontrovertible, is made available hitherto to change the recommendations from 1947. Rather, the Finnish experiences from 1950th to 1975 had shown that children should have between 125 and 50 µg vitamin D3 is not only safe but helps preventing diabetes type 1 [25]. This is approximately 4 to 8 µg vitamin D3 per day and kg bodyweight.

 

During lactation the mother’s viamin D3 level should be maintained at or more than 125 nmol/L during lactation to ensure the vitamin D3 transfer via breast milk to he child.

 

Children

The information above shows incontrovertible that children of age less than 10 years of age are recommended to have at least 125 µg Vitamin D3 as a supplement to maintain an adequate level of at least 125 nmol/L.

 

Adults

Children above 10 years age can use the same recommendations as the adults or at least 125 µg vitamin D3 per day. The safe upper limit is at least 3 500 µg per day.

 

Elderly

Elderly above 65 years of age can use the same recommendations as the adults or at least 125 µg vitamin D3 per day. The safe upper limit is at least 3 500 µg per day. This will prevent a majority of falls and bone fractures as the physiological level of vitamin D3 is maintained throughout the whole life.

 

 

Lines 772-782 should be replaced by the following text

 

and falls and CVD outcomes. The level of vitamin D3 in NNR2004 of more than 50 nmol/L is inadequate according to both old and especially new knowledge. Many studies have shown that the physiological level of vitamin D3 is above 125 nmol/L. Also, many studies have shown that vitamin D3 levels below the physiological level of 125 nmol/L increases the risk of disease.

 

The sun induced production of vitamin D3 is limited by physical laws to about four months during summer in the Nordic countries.

 

Another limitation is the use of sunblock (contains cancer causing benzene derivates to absorb UVA and UVB) and covering clothes that blocks the synthesis of vitamin D3.

 

These sun blocking advice are not protecting against skin cancer [26], [27].

 

The supplementation level is thus set to at least 125 µg per day.

 

 

Lines 884-820 should be replaced by the following text

 

 

Upper limit of vitamin D3 intake

The American IOM (Institute of Medicine) and EFSA has established an upper limit of 100 µg vitamin D3 to adults.

 

These ULs settled by IOM and EFSA seem to be too low as there are a lot of toxicity and physiological knowledge recommending a much higher Tolerable Upper Limit of vitamin D3 . See the part on toxicity.

 

Also, EFSA have recommends an upper limit intake of vitamin D3 to newborn of 25 µg per day. That is equal to 625 µg or 25 000 IU per day to an adult [28]. This mean that EFSA has settled two different upper limits, one that is 25 times higher than the next.

 

The proposed upper level of vitamin D3 intake of 500 µg is safe by a factor of at least 2, probably a safety factor of 8, when the daily intake is below 3 500 µg/day or 50 µg*kg-1*day-1 (or 140 000 IU per day or 2 000 IU per kg and day).

 

 

Line 822 should be replaced by the following text

 

 

Summary

Man seems, according to old and modern scientific research, to need a physiological level of at least 125 nmol/L vitamin D3 to stay healthy.

 

As sun induced synthesis of vitamin D3 has decreased due to the recommendations of the Swedish Irradiation safety authority to avoid vitamin D3 producing sunshine the proportion of individuals with vitamin D3 deficiency have increased compared to 1992.

 

The information presented here shows that the physiological level of vitamin D3 should be maintained at more than 125 nmol/L and that levels below 125 nmol/L must be considered as deficiency.

 

The sources of vitamin D3 in food are scarce so we are forced to rely on supplements of vitamin D3.

 

It is well known and established that there is a direct linear relationship between intake in µg per day and level of vitamin D3 in plasma.

 

The recommendation is therefore according to the table below to reach the population level of at least 125 nmol/L.

 

The safe upper limit of vitamin D3 intake is more than 3 125 µg per day or more than 50 µg/kg/day.

 

The recommendations to the population should thus be as shown below:

 

Recommendation table

Vitamin D3                                                                                  

Age group                            Minimum µg/d        Maximum µg/d

Recommended intake               RI

Children below age 10                    75 µg                       250 µg

Children above age 10                  125 µg                       500 µg

Adults                                           125 µg                       500 µg

Pregnancy and lactation                 250 µg                       500 µg

Elderly                                          125 µg                       500 µg

Average requirements             AR        125 µg                       500 µg

Lower intake level adult            LI        125 µg

Upper intake level                                                                500 µg

 

 

 

 

 

 



References

[1] A. Norman, University of California-Riverside, UCR, History of vitamin D 

http://vitamind.ucr.edu/about/ Accessed 2013-05-01.

[2] Vitamin D, 3rd Ed. Edited by Feldman, D., Pike, J.W, Adams, J.S. San Diego, Academic Press, pp. 1-2081 (2011).

[3] C.L. Wagner Vitamin D Recommendations during Pregnancy, Lactation and Early Infancy

http://media.clinicallactation.org/2-1/CL2-1Wagner.pdf . Accessed 2012-05-01

[4] Uppsala akademiska hospital, Akademiska laboratoriet  downloaded 2013-05-09 http://www.akademiska.se/sv/Verksamheter/Provtagningsanvisningar/

[5] R. Vieth / Journal of Steroid Biochemistry & Molecular Biology 89–90 (2004) 575–579http://www.direct-ms.org/pdf/VitDVieth/VIETH%20More%20vit%20D%20needed.pdf

[6] Brohult J, Jonson B. Effects of large doses of calciferol on patients with rheumatoid arthritis. A doubleblind clinical trial. Scand J Rheumatol. 1973;2(4):173-6.

[8] Hyppönen E, Läärä E, Reunanen A, Järvelin MR, Virtanen SM. Intake of vitamin D and risk of type 1 diabetes: a birth-cohort study. Lancet 2001;358:1500 –3.

[9] Scanlon et al Subclinical effects in a population exposed to excess vitamin D in milk. Am J Public Health 1995 85(10): 1418-22

[10] Lisa A Houghton and Reinhold Vieth  The case against ergocalciferol (vitamin D2) as a vitamin supplement Am J Clin Nutr 2006;84:694 –7. http://www.ajcn.org/content/84/4/694.full.pdf  

[11]  G Jones Am J Clin Nutr 2008;88(suppl):582S– 6S. http://ajcn.nutrition.org/content/88/2/582S.full.pdf

[12] Pludowski P, et al, Vitamin d supplementation and status in infants: a prospective cohort observational study.  J Pediatr Gastroenterol Nutr. 2011 Jul;53(1):93-9.

[13] Vieth, R, Vitamin D supplementation, 25-hydroxyvitamin D concentrations, and safety. Am J Clin Nutr 1999;69:842–56.

[14] John H. Lee, MD,* James H. O’Keefe, MD,* David Bell, MD,† Donald D. Hensrud, MD, MPH,‡ Michael F. Holick, MD, PHD§, Vitamin D Deficiency An Important, Common, and Easily Treatable Cardiovascular Risk Factor? Journal of the AmericanCollege of Cardiology Vol. 52, No. 24, 2008

[15] Landin-Wilhelmsen K, Wilhelmsen L, Wilske J, Lappas G, Rosén T, Lindstedt G, Lundberg PA, Bengtsson BÅ. Sunlight increases serum 25(OH) vitamin D concentration whereas 1,25(OH)2D3 is unaffected. Results from a general population study in Göteborg, Sweden (The WHO MONICA Project). Eur J Clin Nutr. 1995;49(6):400-7.

[16] Brustad et al. Photochem. Photobiol. Sci., 2007, 6, 903–908http://www.nnc2012.is/programme.aspx

[17] Hyppönen E, Läärä E, Reunanen A, Järvelin MR, Virtanen SM. Intake of vitamin D and risk of type 1 diabetes: a birth-cohort study. Lancet 2001;358:1500 –3.

[18] Morten K.B. Bogh1, Anne V. Schmedes2, Peter A. Philipsen1, Elisabeth Thieden1 and Hans C. Wulf Vitamin D Production after UVB Exposure Depends on Baseline Vitamin D and Total Cholesterol but Not on Skin Pigmentation Journal of Investigative Dermatology (2010), Volume 130 p 546-53

[19] Stephanie Seneff, MIT, personal communication in 2011.

[20] Lisa A Houghton and Reinhold Vieth  The case against ergocalciferol (vitamin D2) as a vitaminsupplement Am J Clin Nutr 2006;84:694 –7.

[21] Hyppönen E, Läärä E, Reunanen A, Järvelin MR, Virtanen SM. Intake of vitamin D and risk of type 1 diabetes: a birth-cohort study. Lancet 2001;358:1500 –3.

[22]  Krishna G Seshadria, Bubblu Tamilselvana, Amarabalan Rajendran. Role of Vitamin D in Diabetes Journal of Endocrinology and Metabolism Volume 1, Number 2, June 2011, pages 47-56 (DOI):10.4021/jem23w http://jofem.org/index.php/jofem/article/view/23/32

[23] Obermer, E. Vitamin-D requirements in pregnancy. Br Med J. 1947 Dec 6;2(4535):927

[24] Obermer, E. Vitamin-D requirements in pregnancy. Br Med J. 1947 Dec 6;2(4535):927

[25] Hyppönen E, Läärä E, Reunanen A, Järvelin MR, Virtanen SM. Intake of vitamin D and risk of type 1 diabetes: a birth-cohort study. Lancet 2001;358:1500 –3.

[26] Elwood JMJopson J. Melanoma and sun exposure: an overview of published studies. Int J Cancer. 1997 Oct 9;73(2):198-203.

[27] Social and welfare board of Sweden, statistical data base, showing a sudden increase in malignant melanoma rate from 2003. There is almost no malignant melanoma cases below age 20, a steady level since 1970.

[28] Scientific Opinion on the Tolerable Upper Intake Level of vitamin D. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). EFSA Journal 2012;10(7):2813

http://www.efsa.europa.eu/en/efsajournal/doc/2813.pdf


Malignt melanom

Cancerfonden gick ut stort med att malignt melanom har ökat kraftigt mellan 2010 och 2011 för kvinnor.

 

Jaha, det är bara att gå till Socialstyrelsens statistikdatabas.  Sök på malignt melanom, antal fall.

 

Det finns statistik från 1970 till 2011. Det var bara 556 fall 1970. Sedan ökar antalet fall helt linjärt med omkring 40 personer per år fram till och med 2003 då det fanns 1925 fall av malignt melanom. År 2011 borde det då ha funnits 2 216 fall om trenden håller i sig.

 

Problemet är att från 2004 har antalet fall helt plötsligt ökat med 189 fall per år, en helt linjär ökning, så att 2011 var det 3323 fall. Det var 1 101 fler fall av malignt melanom än det borde vara. Och det är lika stor ökning hos män och kvinnor. Så Cancerfonden vinklar informationen genom att begränsa urvalet till kvinnor mellan 2010 och 2011 då det var en högre ökning för kvinnor än för män. Men året innan var det tvärt om.

 

Om man tittar på trendlinjer för de senaste 7 åren och drar ut dem ner till noll fall av malignt melanom så blir det en minskning från 2011 med 189 fall per år tillbaka genom åren tills man kommer till noll fall. Då skulle vi i mitten av 1993 inte haft ett enda fall av malignt melanom om de senaste årens trend hade hållit i sig. Men vi hade 1 436 fall av malignt melanom 1993. Detta visar att det är ett klart trendbrott runt 2003.

 

Den här plötsliga ökningen kan inte bero på en genetisk faktor, den är för plötslig.

 

Det måste vara en omgivningsfaktor.

 

Maten har varit oförändrad sedan 1989 då Nyckelhålet presenterades av Livsmedelsverket. Det skulle förutsätta att tiden mellan strålskadan och hudcancern är mindre än 15 år. Socialstyrelsens statistik uppger mindre än ett fall av malignt melanom per år hos barn under 15 år under 41 års tid. Så då borde det inte vara kosten. 

 

En annan förklaring kan vara Strålsäkerhetsmyndigheten. De har sedan omkring 2000 kraftig propagerat för att man ska undvika solen och att man ska skydda sig med solskyddsfaktorer och tät klädsel.

 

Det finns många undersökningar som visar att solbestrålning ger oss ökade mängder av vitamin D3. Men solen måste stå minst 35º över horisonten för att UVB-ljuset ska orka tränga igenom atmosfären för att kunna omvandla kolesterol i huden till vitamin D3. Under vinterhalvåret och några veckor in på sommarhalvåret är solens eklips under 35º. Så det blir bara ett par månader på vardera sidan om midsommar som man kan få solen att vara tillräckligt högt på himlen några timmar mitt på dagen för att man ska få i sig tillräckligt med solljus med UVB. Just den tiden rekommenderar SSM att man vara inomhus eller bära täckande klädsel och smörja in sig med solskyddsmedel. Så då kan man inte få i sig något UVB-ljus och därmed inget vitamin D3.

 

Nästa problem är att solskyddsmedel oftast innehåller bensenderivat eftersom just dessa molekyler kan absorbera UVB-ljus och förhindra att det bildas vitamin D3. Men det är känt sedan tidigt på förra seklet att bensenderivat är cancerframkallande. Det är därför det finns alkylatbensin, bränsle till gräsklippare och motorsågar, där man renat bensin från bensen. Detta för att man ska minska cancerrisken från bensinen hos småmotorerna.

 

Men vi ska slaska på cancerframkallande bensenderivat på huden för att slippa hudcancer!

 

Det är något som saknas i logiken här.

 

Vitamin D3 hjälper till att reparera DNA-skador orsakade av UVA-ljus. Vitamin D3 stödjer immunsystemet. Vitamin D3 används i flera hundra kemiska reaktioner i kroppen och behövs.

 

Den fysiologiska koncentrationen av vitamin D3 definieras som den koncentration av vitamin D3 i blodet hos en ammande kvinna där barnet får vitamin D3 via bröstmjölken. Den fysiologiska koncentrationen är mer än 125 nmol/L. Utan sol brukar det krävas minst 125 µg (5 000 IE) vitamin D3 som tillskott för att bibehålla minst 125 nmol/L.

Laboratorierna har litet konstiga normalvärden men dessa är baserade på provtagning hos en ”frisk normalpopulation”. Här hävdar man att mer än 75 nmol/L är ”optimal” koncentration, 50-75 nmol/L betraktas som ”suboptimal” och mindre än 50 nmol/L betraktas som ”brist”.

 

Jag förstår inte logiken här. Fysiologisk koncentration måste betraktas som optimal. ”Suboptimal” måste betraktas som brist, precis som ”brist”.

 

Trots den ”suboptimala” definitionen så har numera övervägande delen av befolkningen i Norden åtminstone ”suboptimal” koncentration eller brist på vitamin D3. Det är ännu fler som har en koncentration av vitamin D3 som ligger under den fysiologiska gränsen om 125 nmol/l och därmed har en brist på vitamin D3.

 

Mer än 250 nmol/L betraktas som toxisk.

 

Men den toxiska nivån ger inga som helst symtom förrän man kommer över 750 nmol/L enligt litteraturen. Det finns många försök gjorda på 1900-talet där man gett mer än 1 250 µg (100 000 IE) per dag i mer än ett år utan några tecken på intoxikation.  

 

Så för att uppnå den fysiologiska koncentrationen måste man tillföra mer vitamin D3 genom tillskott eller genom att sola tillräckligt mycket utan solskyddsmedel i alla dess former.

 

Det är också visat att brun hudfärg inte begränsar produktionen av vitamin D3. Så mörkhyade personer har precis lika stor produktion av vitamin D3 som ljushyllta personer. Det som styr produktionen av vitamin D3 vid solbestrålning är koncentrationan av vitamin D3 i kroppen. 

 

Ligger vitamin D3 koncentrationen låg i kroppen så bildas mycket vitamin D3, är nivån över 250 nmol/L så bildas i stort sett inget mer vitamin D3 i huden.

 

Kroppen har en perfekt reglermekanism för vitamin D3. Så det gäller att sola någon timme per dag mittpå dagen sommartid för att få tillräckligt mycket vitamin D3 så att det räcker även under den långa vintern här uppe i högan nord.

 

I USA rekommenderade den federala Barnbyrån 1933 att nyfödda barn skulle sola nakna en kvart per dag den första veckan, därefter skulle de öka soltiden med en kvart per vecka så att ett en månad gammalt barn skulle sola en timme per dag. Knappt 40 år senare hade vi i Sverige 556 fall av malignt melanom i Sverige enligt Socialstyrelsens statistik.

Slutsats:

  • Lägg dig i solen och utnyttja solens UVB-innehållande vitamin D3-skapande ljus för att må bra och slippa hudcancer.
  • Låt bli att slaska på cancerframkallande ”solskyddsmedel”.
  • Låt bli tät klädsel.
  • Sola hela kroppen lagom, räcker vanligtvis med någon timme mitt på dagen under mitten av april till mitten av september.
  • Ät gärna minst 1 250 µg (50 000 IE) per vecka för att säkerställa att nivån av vitamin D3 är över 125 nmol/L

NNR5 Chapter Energy

NNR5 Chapter Energy 

My answer to the NNR5 Public Consultation on Energy

 

 

The human organism is always striving for survival and homeostasis. In order to survive the person needs to eat food. Food consists of macronutrients and micronutrients.

 

The micronutrients are covered elsewhere.

 

The macronutrients are the energy suppiers as well as building material for the body.

There are three macronutrients, protein, fat and carbohydrates. They all contain carbon as an energy source.

 

Protein

Proteins consist of the building blocks amino acids. There are about 20 amino acids in the animal body. Humans can make about ten amino acids from scratch and the remaining about ten amino acids the person has to eat to be able to use them. So protein is an essential part of the food. Without protein we will not survive for long.

 

The amount of protein in the food should be at least 0.5 grams of animal protein per kg body weight. This is enough for a newborn child to increase 50 % in length during the first year and should be enough for the rest of the life [1].

 

We have a limited storage facility of free amino acids. Any excess of protein is deaminated and the rest is converted to short fatty acids or short alcohols that can be used in the metabolism.

 

Those short fatty acids and short alcohols can enter the central metabolism in the body, more about that later.

 

We have tens of kg of muscles with about 20 % protein.

 

On the cellular level cells contain a lot of different structural, signalling, building and other kinds of protein molecules, all necessary for survival. Muscle cells contain great amounts of contracting proteins to be able to move the body and parts.

 

No normal animal protein is toxic to humans.

 

Fat

The major functions of fat is energy production, energy source, energy storage and padding delicate organs in the body.

 

We have tens of kg of fat in the body. We can store several hundred kg of fat.

 

Fats consist mainly of triglycerides (three fatty acids connected to a glycerol molecule) but there are free fatty acids, monoglycerides, diglycerides, phospholipids as well as other lipids and lipid like molecules.

 

The major composition of fat is shy of 50 % saturated fats (SAT), shy of 50 % monounsaturated fats (MUFA) and the rest, about 5 %, is polyunsaturated animal fats (PUFA) with carbon atom numbers of at least 20 C.

 

The fatty acid composition is about the same for all warm blooded animals as they have the same body temperature around 37ºC. This is because fats must have a correct melting temperature for proper function. Arctic fish have much higher PUFA concentration as PUFAs have much lower melting temperature compared to animal fat.

 

This is shown beautifully by placing butter, olive oil and canola oil taken from the fridge on a plate and let it sit on the table. The canola oil is still liquid at fridge temperature, the olive oil is partly solid at fridge temperature and the butter is definitely solid at fridge temperature.

 

At room temperature both oil fats are liquid but butter is solid. When temperature rises above 30º C then also butter melts into liquid form.

 

So arctic fish must have higher concentration of PUFA to survive due to it’s lower organism temperature.

 

Salmon has 3.3 g PUFA and bacon has 2.8 g PUFA. This means that 100 g salmon can be replaced by 118 g bacon to achieve the same amount of PUFA. Also 100 g salmon can be replaced by 35 g lard.

 

So as long as we eat animal fat we will always get enough PUFA.

 

We also have to realize that vegetable PUFAs usually are nonelogable to animal long chain PUFAs in our body. Vegetable omega-6 are inflammation producing and if more than 20 g per day also causing cancer, well known by the old transplantation surgeons as well as Livsvmedelsverkets civil servants.

 

Animal fats in the form of phospholipids are essential to our cell membranes as they separate cells and organelles form each other and intracellular as well as extracellular environments. Also in all membranes there are about the same number of cholesterol molecules as phospholipids molecules to make the cellular and other membranes stable and supportive.

 

So the lipids of all kinds are essential to life.

 

Lipids and fats are also necessary making up the cushioning around delicate structures in the body. Fat is also an excellent energy source for the body.

 

Also fat tissue and fat cells in muscles is normally the major source of acetylcoenzyme A (AcCoA or activated acetic acid) which is the only energy producing molecule in the cellular mitochondria. See the Krebs cycle for more biochemical and energy details.

 

This means that all animal fat are essential to us and they are nontoxic as they consist of the same fats in the same proportions as our own fat. The animal fats also requires the least remodeling and exchange due to the same reason.

 

Fat is also the most energy dense macronutrient so persons can eat smaller portions to have enough energy. Also, fat is the most satisfying macronutrient.

 

Carbohydrates

 

Carbohydrates are the third kind of macronutrients. Carbohydrates consists of sugars. So carbohydrates are equivalent to sugars.

 

Fibers consists of polymers of glucose that no warm blooded animal can digest. Herbivores are using microbes to digest fibers like cellulose to short chain fatty acids, less than 7 carbon atom long chains. Those short or volatile fatty acids are completely water soluble and can thus be taken up directly in the blood and then transported directly to the liver for further use and can enter the central metabolism in the body, more about that later.

 

Humans are unable to digest fibers as we lack the fermenting microbes and fermentation tank like the 1 hL four parted ventricle of a normal cow.

 

So fibers lack energy in humans, easily contolled by eating pure fibers and check the lack of hydrogen gas production the digestion of fibres always cause.

 

Starches all consists of polymers of glucose easily degraded in the intestinal tract by a lot of enzymes down to single units of glucose.

 

Other common disaccarides are sucrose (consists of glucose and fructose), lactose (glucose and galactose), maltose (glucose and glucose). Disaccarides can not be absorbed by the intestines, so they have to be digested by common enzymes to their monosaccarides. Those monosaccharides like glucose (most abundant), galactose (animal sugar) and fructose (vegetable sugar).

 

A human of 70 kg has a low glucose concentration of 3-6 mmol/L in the blood to supply the Red Blood Cells (RBC) with energy as RBC lack mitochondria.

 

The normal blood concentration of 3-6 mmol/L is equal to the amount of 1.5 to 3 grams of glucose in the total blood volume of 5.6 L.

 

The RBC utilize glucose anaerobically via the RBC-specific Rapoport-Luebring pathway including 2,3-diphosphoglycerate (2,3-DPG) that is required to release oxygen from the hemoglobin molecule. Then the 2,3-DPG is transformed to lactic acid and 2 molecules energy rich ATP.

 

When having 5 g glucose, without insulin and a theoretical immediate uptake, the glucose level will increase to around 15 mmol/L which is a toxic concentration of glucose.

 

By having more than 15 to 25 g glucose in the blood (>30-50 mmol/L) the normal person will very shortly die from acute glucose intoxication.

 

Glucose and fructose are toxic at higher concentrations than 6 mmol/L the monosackarides are nonenzymatically glycating the lysine amino acid residue in proteins and thus changing the morphology and may change the function of the protein.

 

The most famous glycated protein is HbA1c where the attached glucose/fructose molecule destroys the oxygen transport function of hemoglobin.

 

This glycation of proteins is the major problem with carbohydrates.

 

When the person has carbohydrates the blood glucose rises immediately which releases insulin. The insulin has a lot of actions in order to normalize the blood glucose level. The insulin slows down the intestinal uptake of nutrients, inhibits the AcCoA production from fat and protein because the monosaccaride concentration just has to be normalized as the body otherwise will die from acute monosaccaride intoxication.

 

Read more about the wonderful insulin molecule and functions at reference below [2] .

 

There are no essentiality of eating carbohydrates. All sugars the human body needs is happily produced by the liver. And the liver can always produce enough sugar.

 

The logic behind NNR4 recommendation to have 50-60 % of the energy (%) is totally missing. As excess of carbohydrates increase the insulin level for long times thus decreasing the fat energy expenditure and that carbohydrates are partly converted to fat and thus increasing body weight the amount of carbohydrates has to be minimized.

 

It is also after the introduction of NNR with a in the 1980-ies that the epidemy of diabetes and obesity rose inexplicably. The only change in the environment is the exchange of fat to carbohydrate as major energy source.

 

It’s OK to have vegetables ad libitum as they do contain small absolute amounts of carbohydrates.

 

The amount of fruit should be limited due to the fact that most fruit contains the same amount of sugars as soft drinks, about 10-12 grams per 100 g

 

The amount of grain and grain products like bread, pizza, pasta contains 30-90 g carbohydrates per 100 g of grain product. Thus grain products should be restricted to small amounts realizing that many persons are gluten intolerant and should then be totally excluded.

 

 

Energy

The intake of energy is recommended by NNR4 to 2.5 Mcal (2 500 kcal) for women and 3.2 Mcal for men. As long as the carbohydrate intake is less than 100 g per day the population will normalize the body weight. So this recommendation can be propagated to NNR5.

 

All weight reduction diets have a common denominator:

Carbohydrate reduction.

 

Just compare a NNR4 diet with 50 E% carbohydrates and 0.8 Mcal to a low carbohydrate diet with 2.5 Mcal and 16 E% carbohydrates.

 

This means that the NNR4 starvation diet contains 100 g carbohydrates, the person loses weight, is always hungry and the person will starve to death, usually within a year.

 

On the other hand the low carbohydrate diet contains 100 g carbohydrates, the person loses weight, is always satisfied and the person can eat that kind of food for decades.

 

Both diets are shown to give the same weight decrease in the short term but the famine dieter is unable to continue for more than a few months or the diet will be lethal. The lowcarber can have delicious food for decades and keep the weight loss.

 

The first law thermodynamics tells us that in an isolated system energy in equals energy out.

 

But the human body is not an isolated system. And we have to realize that we also have to obey the second law of thermodynamics as well as the hormonal control of the body. This means that the body can regulate the efficiency between 0 and up to less than 100 %. The most part will be heat.

 

We also have to realize that fat does not increase the insulin level. Excess protein may and carbohydrates always increase the insulin level to normalize the glucose level. So insulin changes the normal fat burning metabolism to carbohydrate burning and fat generating metabolism to survive.

 

The obesity care have tried to have obese patient to eat less and run more. This hypothesis has been disproven many times during the last 35 years. But it seems that the obesity care units were unable to realize these results.

 

So by having ad libitum food consisting of normal amounts of protein, maximum 100 g of carbohydrates and 70-90 E% mostly animal fat the population will in a few years regain normal weight, decrease disease burden and a better general health.

 

NNR5 macronutrient recommendation

 

Proposal of NNR5 nutrition recommendations to healthy individuals based on the old trustworthy sciences physiology, biochemistry and endocrinology:

 

Summary of NNR 2012 recommendations to healthy individuals

 

NNR 2012 recommend an adequate intake of essential nutrients of protein, fat, minerals and vitamins.

 

NNR 2012 recommends a normal daily intake of essential animal protein of at least 0,5 g/kg bodyweight.

 

NNR 2012 recommends an upper limit of 100 g of carbohydrates/sugars per day [3].

 

NNR 2012 recommends a sufficient intake of essential fats to satisfy the energy and metabolic requirements.

 

NNR 2012 recommends an upper limit of 20 g per day of vegetable omega-6 polyunsaturated fats. [4], [5].

 

NNR 2012 recommends an upper limit of fiber intake of 25 g per day to an adult and an upper limit of 0,35 g/kg to a child.

 

NNR 2012 recommends an upper limit of one fruit per day.

 

 

 

The conclusion of food consumption changes between NNR4 and NNR5 to promote health in Nordic populations

                                                                            

Increase............................Unchanged.......................Limit to per day

Fat, preferably animal......Protein from meat..........Limit Carbohydrates to 100 g.

.............................................Vegetables.......................Limit Omega-6 PUFA to 20 g.

.........................................................................................Limit fiber to 25 g                  .

.........................................................................................Limit fruit to one                    .

 

 

 

 

 

Background information for NNR 2012 recommendations

From NNR5

Recommendation for carbohydrates, fibre and added sugar

http://www.slv.se/upload/NNR5/NNR5%20Carbohydrates.pdf

 

...............Mikael Fogelholm

................The data on health effects of dietary fibre and fibre-rich foods are very strong.[6]

................Recommendations in NNR 2012:

................Adults: Intake of dietary fibre should be at least 25-35 g/d,

.................i.e. approximately 3 g/MJ.

.................Children: An intake corresponding to 2-3 g/MJ is appropriate for children from

.................2 years of age.

..................From school age the intake should gradually increase to reach the recommended

..................adult level during adolescence.

 

Comment by BH

According to present recommendations in NNR4 children should have about double the amount of fiber per kg bodyweight as an adult. Adults are recommended about 30 g/day or 0,4 to 0,6g/kg while children are supposed to have 3 g/MJ which will be 12 g fiber per day or 1,2 g/kg. This is due to recommendations are associated to the amount of energy eaten instead of kg bodyweight. Children have a higher energy intake per kg bodyweight due to the fact that they need more energy to grow and need more energy to compensate for a larger skin surface heat loss per kg bodyweight than adults.

 

As fibers are associated to an increased risk of colon cancer [7], [8], there is an increased risk that children and adults get colon cancer with the present recommendations.

 

So the new recommendations should be:

 

NNR 2012 recommends an upper limit of fiber intake of 25 g per day to an adult and an upper limit of 0,35 g/kg to a child.

 

...................Mikael Fogelholm

...................Intake of added sugars should be kept below 10 E%.

...................Limitation of the intake of added sugars from particularly sugar-sweetened

...................beverages and sugar–rich foods is recommended in order to reduce the risk for

...................type 2 diabetes, weight gain and dental caries.

....................•A limitation of the intake of added sugars is also necessary to ensure an

....................adequate intake of essential nutrients and dietary fibre, especially in children

....................and adults with a low energy intake.

 

Comment by BH

In NNR4 there is a recommendation to keep intake of added sugars to below 10 E%.

 

It seems that the NNR4 have disregarded that carbohydrates and sugar are synonyms as they recommend a limit of carbohydrates in the form of “added sugar” but recommend 50-60 E% of carbohydrates in a day.

 

 It is good that NNR 2012 will limit the intake of sugar to ensure an adequate intake of essential nutrients. All kinds of carbohydrates consists of sugar which are nonessential and contains 1 to 1/1 000th (or less) of minerals and vitamins compared to food of animal origin [9]. Then we have to re-establish what the essential nutrients are.

 

So the new recommendations should be:

 

NNR 2012 recommend an adequate intake of essential nutrients of protein, fat, minerals and vitamins, preferable in the form of animal proteins and fats which contain enough minerals and vitamins.

 

Vegetables are insufficient in amino acids, all fatty acids including long chain polyunsaturated fatty acids, minerals and vitamins [10] but vegetables are excellent to improve the visual impression of food. Fruit with 10 % sugar content may decrease to maximum one fruit per day

 

......................Also, the NNR 2012 finds no justifications to include a diet-based

......................recommendation for GI in NNR.

 

Comment by BH

This is correct as GI is a partial and indirect measurement of carbohydrates, we are just measuring the glucose level in the blood, we are not measuring all other sugars like fructose, galactose nor are we measuring the continuous insulin level that delays the uptake of sugars in an attempt to normalize a too high blood glucose level.

 

Also, the SBU report Mat vid diabetes of 2010 found no justification to include a diet-based recommendation for GI

 

So an added recommendations should be:

 

NNR 2012 finds no justifications to include a diet-based recommendation for GI in NNR.

 

......................Also, NNR4 recommends specific “quality” of fat.

 

Comment by BH

As all mammals have the same temperature of 37ºC, they all have the same animal fat composition with the same melting temperature for correct function. This means animal fat has shy of 50 % saturated fat, shy of 50 % monounsaturated fat and about 5 % polyunsaturated fat. This is the ideal mixture of fats and the fat has a correct melting temperature to support correct function of fat in tissues and cell membranes.. 

 

 Conflict of Interest

Mikael Fogelholm is Editor-in-Chief for the publication Food & Nutrition Research where all the research behind the NNR5 is published. Food & Nutrition Research is owned by Swedish Nutrition Foundation (SNF) whose members are the food industries.

 

So all the research is published in a publication that has serious Conflict of Interests. And Fogelholm has not declared his Conflict of Interest as an Editor-in-Chief in his CoI decaration to NNR5.

 

 

Mora 2013-04-08

 

Björn Hammarskjöld

M.D., Ph.D.

Independent scientist in Nutrition



[1] Livsmedelsverkets databas modersmjölk

[2] Insulin, Tack för att det finns!  http://kostkunskap.blogg.se/2013/march/insulin-tack-for-att-det-finns.html

[3] Based on old fashioned physiology, biochemistry and endocrinology, e.g. Lagerholm, J., Hemmets Läkarebok, Fröléen & Comp, Stockholm, 1921 and Ganong, W., Medical physiology, Lange Medical Publications, Los Altos, CA, USA 1971.

[4] Wirfält, Mattisson et al Postmenopausal breast cancer is associated with high intakes of omega6 fatty acids (Sweden). Cancer Causes Control. 2002 Dec;13(10):883-93.

[5] Ramsden, Zamora et al Use of dietary linoleic acid for secondary prevention of coronary heart disease and death: evaluation of recovered data from the Sydney Diet Heart Study and updated meta-analysis. BMJ 2013;346:e8707 http://www.bmj.com/highwire/filestream/629053/field_highwire_article_pdf/0/bmj.e8707

[6] SBU rapport Mat vid diabetes 2010. No scientific support for NNR4 recommendations.

[7] Park Y, et al. Dietary fiber intake and risk of colorectal cancer: a pooled analysis of prospective cohort studies. JAMA 2005; 294: 2849-2857.

[8] Fuchs CS, et al. Dietary Fiber and the Risk of Colorectal Cancer and Adenoma in Women. New Engl J Med 1999; 340: 169-176, 223-224.

[9] Livsmedelsverkets databas http://www7.slv.se/Naringssok/

[10] Livsmedelsverkets näringssök http://www7.slv.se/Naringssok/


Livsmedelsverkets nya Bra mat i skolan

Livsmedelsverket har enligt ett pressmeddelande 2013-04-18 gett ut en ny vägledning som kallas Bra mat i skolan.

 

Tyvärr ges den ut innan Nordiska NäringsRekommendationer 2012 (NNR2012 eller NNR5 som den också kallas) har kommit ut. NNR2012 avser man utges under sommaren 2013. Men ännu har den sista remissomgången inte publicerats.

 

Det är därför synnerligen olämpligt att ge ut en ny version av Bra mat i skolan. Det är slöseri med skattemedel att göra det. Bra mat i skolan måste göras om efter det att NNR5 presenterats. Men detta kan också ingå i den strategi som Livsmedelsverket har för att säkerställa att NNR5 överensstämmer med den av SBU underkända NNR4.

 

Vid en snabb genomläsning finner man en mängd felaktigheter i eposet från Livsmedelsverket.

 

För det första verkar man fortsätta att arbeta efter NNR4 (den version som kom ut 2004-5) och som i sin helhet underkändes av Statens beredning för medicinsk utvärdering (SBU) i dess rapport från 2010.

 

Detta innebär att NNR4 inte får användas som underlag för kostrådgivning över huvud taget. Därmed faller hela underlaget till Bra mat i skolan.

 

Så det räcker egentligen med detta konstaterande. Och släng sedan denna version av Bra mat i skolan i den elektroniska papperskorgen, sudda bort alla ettor och nollor.

 

I det militära fick man lära sig när man gjorde fel. Då blev ordern:

GÖR OM!

GÖR RÄTT!

 

Det blir samma order till Livsmedelsverket.

 

Här kommer ett förslag till Livsmedelsverket för en omarbetad version som stämmer med fysiologin, biokemin och endokrinologin från förra seklet, alltid lika aktuella kunskaper.

 

 

Livsmedelsverket har en vacker men ofullständig tabell med rekommendationer.

 

Låt oss gå igenom tabellen och justera allteftersom.

 

*************************************

 Livsmedelsverkets tabell i Bra mat i skolan

 

Tabell 1. Åldersanpassade referensvärden för energi- och näringsinnehåll i en genomsnittlig skollunch, motsvarar 30 procent av rekommenderat dagligt intag (RI) enligt SNR 2005.

Ålder (år)…………………………………6–9……...10–12……..13–15……..16–18

Energi per portion (MJ) 30 %.....................2,3…………2,8…………3,1………...3,4

(25–35 %)…………………………..(1,9–2,7)…...(2,3–3,2)…..(2,6–3,6)…..(2,8–3,9)

Energi per portion (kcal) 30 %.................550…………660………...750………...810

(25–35 %)…………………………(460–650)….(550–770)…(620–870)….(680–950)

Protein (g)…………………………….14–28………17–33……..19–37……….20–41

Mättat fett (g) Högst……………………..6,2………….7,4…………8,3………….9,0

Fleromättat fett (g)………………….3,1–6,2……..3,7–7,4…….4,1–8,3……..4,5–9,0

Fibrer (g)………………………………….7…………….8…………...9…………...10

Vitamin D (μg)…………………………2,3…………...2,3…………2,3…………..2,3

Vitamin C (mg)…………………………12……………15………….23……………23

Folat (μg)………………………………..39……………60………….90…………..120

Järn (mg)……………………………….2,7……………3,3…………4,5…………..4,5

Salt (g) Högst………………………….1,4*…………..1,7*………...2,0*………….2,1*

* Bör användas som ett riktvärde och långsiktigt mål eftersom det i dag kan vara svårt att uppnå i praktiken. 1,7 g salt motsvarar 0,7 g natrium.

 

*******************************************

 

Här kommer förslaget till en bättre tabell.

 

År är bra som grov indelning men man bör kanske ta med en grov uppskattning av vikten hos barnen. Vikten varierar normalt med ±20-30 % inom varje årskull och här klumpar man ihop treårskullar i samma kolumn varför vikten kan variera ännu mer. Men låt oss sätta en ungefärligt vikt för varje kolumn bara man är medveten om den stora variationen i vikt.

Så det blir en rad till med en grov uppskattning av vikten i de fyra ålderskategorierna.

 

Tabell A Makronäringsämnen

Ålder ……….år……...6–9...10–12…13–15..16–18

Vikt ………..kg……19-25...25-35…35-45…45-75

 

********************************************

 

Energimängden som anges i MJ med två siffrors noggrannhet bör nog anges med endast en siffras noggrannhet baserat på den stora variationen i vikt hos barnen inom gruppen. Två siffrors noggrannhet är för ”exakt”.

Så då blir raden så här.

 

Tabell A Makronäringsämnen

Ålder ……….år……...6–9...10–12…13–15..16–18

Vikt ………..kg……19-25...25-35…35-45…45-75

Energi……….MJ……...2………3………4……...5

 

*************************************

 

Energimängen som anges i kcal och tre siffror bör med samma resonemang anges med en signifikant siffra i form av Mcal (1 Mcal=1 000 kcal)

 

Tabell A Makronäringsämnen

Ålder ……….år……...6–9...10–12…13–15..16–18

Vikt ………..kg……19-25...25-35…35-45…45-75

Energi……….MJ……...2………3………4……...5

Energi……….Mcal…..0,6……0,7…….0,8……0,9

 

***********************************************

 

Mängden protein anges i gram och intervallet är mer än tillräckligt om man äter animaliskt protein men är klart otillräckligt vid vegetarisk kost. När man äter animaliskt protein räcker det med 0,5 g/kg kroppsvikt, vackert visat vid amning. Det bör påpekas att en vuxen människa om 70 kg har omkring 10 kg protein i kroppen. Så animaliskt protein saknar skadeverkningar i kroppen. Så den raden lämnas oförändrad.

 

Tabell A Makronäringsämnen

Ålder ……….år……...6–9...10–12…13–15..16–18

Vikt ………..kg……19-25...25-35…35-45…45-75

Energi……….MJ……...2………3………4……...5

Energi……….Mcal…..0,6……0,7…….0,8……0,9

Protein………g……….19…….24……..29…….36

 

***********************************************

 

Sedan kommer man till mängden fett. Här har man delat upp fett i mättat fett och fleromättat fett och utelämnat enkelomättat fett.

 

Men totalmängden fett anges inte. Inte heller anges hur mycket kolhydrater barnen bör äta. I och med att Livsmedelsverket bara rekommenderar mängd protein så innebär det att fördelningen mellan kolhydrater och fett lämnas helt fritt. Det är bra men skolor har en tendens att inte kunna välja. Man vill ha en norm att gå efter.

 

Eftersom mängden kolhydrater och fett samvarierar inverst så låt oss vänta med fett tills mängden kolhydrater är fastställda.

 

Mängden kolhydrater bör enligt den gamla fysiologin inte överstiga 1 hg per dag oavsett ålder. Mer kolhydrater leder bara till övervikt och sockersjuka.

 

Då bör lunchen ha högst 30 g kolhydrater. Så då för vi in raden för kolhydrater i tabellen

 

Tabell A Makronäringsämnen

Ålder ……….år……...6–9...10–12…13–15..16–18

Vikt ………..kg……19-25...25-35…35-45…45-75

Energi……….MJ……...2………3………4……...5

Energi……….Mcal…..0,6……0,7…….0,8……0,9

Protein………g……….19…….24……..29…….36

Kolhydrater…g……….30…….30……..30……..30

 

***************************************

 

Sedan kommer man till det sista makronäringsämnet, fett. Man måste ha i åtanke att en vuxen människa kan normalt innehålla mer än 10 kg animaliskt fett och i extremfall uppåt 400 kg animaliskt fett utan att dö av fettet. Och knappt 50 % av denna vikt är mättat fett! Det verkar som om Livsmedelsverket ignorerade kunskapen om att animaliskt fett har mycket likartad fettsyrasammansättning oavsett art. Fettsyrasammansättningen är knappt 50 % mättat fett, knappt 50 % enkelomättat fett och resten, omkring 5 %, är fleromättat fett.

 

Livsmedelsverkets begränsning av mättat fett saknar helt vetenskapligt underlag och, om den används, begränsar man totalmängden fett till endast 16 g fett till lunch. Det blir 22 E% fett och det är under den gräns om minst 30 E% fett som Livsmedelsverket anger. Raden med mättat fett utgår då den saknar vetenskaplig grund.

 

Animaliskt fett innehåller omkring 5 % fleromättat fett med normalt minst lika mycket fleromättat fett av omega- 3 som omega-6. Vegetabiliska fleromättade fetter är för korta för att djur ska ha direkt nytta av det fleromättade fettet. Djur har sedan ett enzym som kan förlänga vegetabiliska fleromättade fetter till animaliska fleromättade fetter. Människan har klent med detta enzym men kor, grisar och höns har betydligt bättre och effektivare enzymer. Så det är klart bättre att våra växtätande djur bygger om vegetabiliska fetter till animaliska fetter. Det enda som man då behöver göra är att äta djur med det optimala fettet specialanpassat för människan.

 

Eftersom det finns mycken kunskap om att vegetabiliska fleromättade fetter av omega-6-typ orsakar cancer och inflammation i kroppen så bör mängden fett av omega-6-typ begränsas i maten till under 5 gram per dag oavsett ålder [1]. Genom att ersätta omega-6-fett med animaliskt fett blir det automatiskt rätt fettsyrasammansättning och raden med minimimängd fett av omega-6-typ tas bort.

 

Mängden fett barnen ska äta är redan bestämd av totalmängden energi minus energin från protein minus energin från kolhydrater.

 

Så då blir det enkelt med nästa rad i tabellen.

 

Tabell A Makronäringsämnen

Ålder ……….år……...6–9...10–12…13–15..16–18

Vikt ………..kg……19-25...25-35…35-45…45-75

Energi……….MJ……...2………3………4……...5

Energi……….Mcal…..0,6……0,7…….0,8……0,9

Protein………g……….19…….24……..29…….36

Kolhydrater…g……….30…….30……..30……..30

Fett………….g……….45…….54……..63……..71

 

*********************************************

 

Sedan kommer man till övriga ämnen som Livsmedelsverket tas upp.

 

Fibermängden bör minskas till minde än 0,35 g/kg kroppsvikt så då blir fiberraden i tabell 3 enligt följande.

 

Tabell C Övrigt

Ålder ……….år……...6–9...10–12…13–15..16–18

Vikt ………..kg……19-25...25-35…35-45…45-75

Fibrer högst…….g……...2……...3……..4………5

 

****************************************

 

Mängden vitamin D3 bör uppgå till minst 125 µg/dygn till vuxen om 70 kg för att säkerställa en fysiologisk nivå av vitamin D3 i blodet om 125 nmol/L. Raden blir som följer.

 

Tabell C Övrigt

Ålder ……….år……...6–9...10–12…13–15..16–18

Vikt ………..kg……19-25...25-35…35-45…45-75

Fibrer högst…….g……...2……...3……..4………5

Vitamin D……µg……..15…….20……30……..40

 

********************************************

 

Vitamin C, folat och järn är bra. Så dessa rader lämnas oförändrade.

 

 ********************************************

 

Sedan kommer man till raden med salt.

 

All gammal fysiologi visar att man aldrig kan överdosera salt då vuxen person filtrerar ut omkring 1 gram salt per minut. Barn filtrerar ut på samma sätt. Nyfödda har första dygnet ett intag motsvarande 70 g salt till vuxen för att säkerställa att det nyfödda barnet slipper att dö av saltbrist [2].

Svårigheten är att återabsorbera tillräckligt med salt för att upprätthålla saltkoncentrationen i blodet till 141 ±4 mmol/L. Genom att äta tillräckligt med salt per dag slipper man dö på grund av saltbrist [3]. Det är alltså livsviktigt att barnen i skolan får mat med tillräckligt mycket salt för att barnen ska må bra.

 

Så raden om salt i tabell 3 blir så här:

 

Tabell C Övrigt

Ålder ……….år……...6–9...10–12…13–15..16–18

Vikt ………..kg……19-25...25-35…35-45…45-75

Fibrer högst…….g……...2……...3……..4………5

Vitamin D……µg……..15…….20……30……..40

Vitamin C……mg……..12…….15……23……..23

Folat………….µg……..39…….60……90……120

Järn…………..mg…….2,7……3,3…...4,5…….4,5

Salt Minst……..g……….2………3…….4………4

 

***************************************************

 

Sammanfattningsvis blir det mycket enkelt att ge barnen en fysiologiskt näringsriktig kost genom att följa den gamla hederliga fysiologin från förra seklet.

 

Energimängderna är gamla kunskaper och ungefärliga men de fungerar fortfarande.

 

Mängden protein, omkring 15 E%, stämmer väl med livsmedelsverkets rekommendationer och fysiologin.

 

Mängden kolhydrater, omkring 15 E%, stämmer väl med livsmedelsverkets rekommendationer [4] och fysiologin.

 

Mängden fett, omkring 70 E%, stämmer väl med livsmedelsverkets rekommendationer [5] och fysiologin.

 

Mängden salt i maten bör vara minst 10 g/dag till vuxen och motsvarande mängd till barn baserat på vikten, stämmer väl med fysiologin.

 

Så då är det bara att följa kunskapens väg i stället för Livsmedelsverkets till synes kunskapsbefriade och fria fantasiers väg i Livsmedelsverkets nya vägledning.

 

Mora 2013-04-20

 

Björn Hammarskjöld

F.d. överläkare i pediatrik

Filosofie licentiat i biokemi

Oberoende senior vetenskapsman i nutrition

 

 

Extramaterial

 

Tabell A Makronäringsämnen

Ålder ……….år……...6–9...10–12…13–15..16–18

Vikt ………..kg……19-25...25-35…35-45…45-75

Energi……….MJ……...2………3………4……...5

Energi……….Mcal…..0,6……0,7…….0,8……0,9

Protein………g……….19…….24……..29…….36

Kolhydrater…g……….30…….30……..30……..30

Fett………….g……….45…….54……..63……..71

 

 

Tabell B Energiprocent

Ålder ………år…….6–9   10–12   13–15   16–18

Protein……..E%.........13…….14…….15…….16

Kolhydrater..E%.........20…….17…….15……..13

Fett………...E%.........67…….69…….71……...71

 

Tabell C Övrigt

Ålder ……….år……...6–9...10–12…13–15..16–18

Vikt ………..kg……19-25...25-35…35-45…45-75

Fibrer högst…….g……...2……...3……..4………5

Vitamin D……µg……..15…….20……30……..40

Vitamin C……mg……..12…….15……23……..23

Folat………….µg……..39…….60……90……120

Järn…………..mg…….2,7……3,3…...4,5…….4,5

Salt Minst……..g……….2………3…….4………4

 

 

Livsmedelsverkets pressmeddelande visar på exempel

http://www.slv.se/sv/grupp3/Pressrum/Nyheter/Pressmeddelanden/Tid-att-ata-och-mer-miljotank-lyfts-fram-i-nya-rad-om-skolmat/

Exempel ur råden Bra mat i skolan:

§                          Maten är god och lagad av bra råvaror. 
Håller fullkomligt med

§                          En eller gärna flera alternativa rätter finns att välja på, med fördel ett vegetariskt alternativ som alla får ta av. 
Håller med men vegetariskt alternativ är ofysiologiskt och kan utgå

§                          Eleverna får möjlighet att sitta vid bordet och äta i cirka 20 minuter. 
Håller fullkomligt med

§                          Lunchen serveras mellan kl 11-13, varje elev äter vid samma tidpunkt varje dag. 
Håller fullkomligt med

§                          Köttkonsumtionen hålls nere. 
Felaktigt och ofysiologiskt påstående

§                          Skolorna ställer miljökrav i samband med inköp av livsmedel. 
Håller med

§                          Köket har rutiner så att elever med allergi och överkänslighet inte blir sjuka av maten. 
Håller fullkomligt med

§                          Skolmåltiden används som ett pedagogiskt verktyg i undervisningen. 
Håller fullkomligt med

§                           

Jag håller med om det mesta som Livsmedelsverkets pressmeddelande tar upp, normalt självklara saker som inte ens skulle behöva tas upp i ett normalt artigt, vänligt och omtänksamt samhälle.

 

Men. Varför ska man hålla ned köttkonsumtionen? Äter vi gräsbetat kött oavsett art så äter gräsätaren upp det gräs som annars skulle torka och ruttna till koldioxid och metan. Så gräsätare är metansänkor på samma sätt som skog är koldioxidsänkor. Dessutom är gräsbetarna självgående, självgödslande jordförbättrare till skillnad från traditionellt konstgödslat och utarmande jordbruk.

 

 


[1] Wirfält, Mattisson, Irene (numera vid Livsmedelsverket) et al Postmenopausal breast cancer is associated with high intakes of omega6 fatty acids (Sweden). Cancer Causes Control. 2002 Dec;13(10):883-93.
Malmö Diet and Cancer Study: Department of Medicine, Surgery and Orthopedics, Lund University, Sweden. 

[2] Aperia, Broberger, Herin, Zetterström Salt content in human breast milk during the three first weeks after delivery. Acta Paediatr Scand; 1979; 68; 441-2

[3]  http://kostkunskap.blogg.se/2012/july/livsmedelsverket-och-salt-del-3.html

http://kostkunskap.blogg.se/2012/july/svar-fran-livsmedelsverket.html

[4] Livsmedelsverkets Rapport nr 1 SNÖ från 2003 sidan 5, st 2 nedifrån.http://www.slv.se/upload/dokument/rapporter/mat_naring/RapportSNO.pdf

[5] Livsmedelsverkets Rapport nr 1 SNÖ från 2003 sidan 5, st 2 nedifrån.http://www.slv.se/upload/dokument/rapporter/mat_naring/RapportSNO.pdf

Björn Hammarskjöld

 

 

NNR 2012 Energy Short version

Summary of NNR 2012 recommendations to healthy individuals

 

NNR 2012 recommend an adequate intake of essential nutrients of protein, fat, minerals and vitamins, preferable in the form of animal proteins and fats which contain enough minerals and vitamins.

 

NNR 2012 recommends a normal daily intake of essential animal protein of at least 0,5 g/kg bodyweight.

 

NNR 2012 recommends a sufficient intake of fats to satisfy the energy and metabolic requirements.

 

NNR 2012 recommends a sufficient intake of salts including sodium chloride of at least 7,5 g (or at least 3 g sodium) per day to satisfy the metabolic requirements.

 

 

Limitations of intake

 

NNR 2012 recommends an upper limit of 100 g of carbohydrates/sugars per day.

 

NNR 2012 recommends an upper limit of 20 g per day of vegetable omega-6 polyunsaturated fats.

 

NNR 2012 recommends an upper limit of fiber intake of 25 g per day to an adult and an upper limit of 0,35 g/kg to a child.

 

NNR 2012 recommends an upper limit of one fruit per day.

 

NNR 2012 recommends an upper limit of fiber intake of 25 g per day to an adult and an upper limit of 0,35 g/kg to a child.

 

NNR 2012 finds no justifications to include a diet-based recommendation for GI in NNR.


NNR5 Energy

NNR5 Energy

This is what I have sent to the NNR5 Public Consultations part three

 

The human organism is always striving for survival and homeostasis. In order to survive the person needs to eat food. Food consists of macronutrients and micronutrients.

 

The micronutrients are covered elsewhere.

 

The macronutrients are the energy suppiers as well as building material for the body.

There are three macronutrients, protein, fat and carbohydrates. They all contain carbon as an energy source.

 

Protein

Proteins consist of the building blocks amino acids. There are about 20 amino acids in the animal body. Humans can make about ten amino acids from scratch and the remaining about ten amino acids the person has to eat to be able to use them. So protein is an essential part of the food. Without protein we will not survive for long.

 

The amount of protein in the food should be at least 0.5 grams of animal protein per kg body weight. This is enough for a newborn child to increase 50 % in length during the first year and should be enough for the rest of the life [1].

 

We have a limited storage facility of free amino acids. Any excess of protein is deaminated and the rest is converted to short fatty acids or short alcohols that can be used in the metabolism.

 

Those short fatty acids and short alcohols can enter the central metabolism in the body, more about that later.

 

We have tens of kg of muscles with about 20 % protein.

 

On the cellular level cells contain a lot of different structural, signalling, building and other kinds of protein molecules, all necessary for survival. Muscle cells contain great amounts of contracting proteins to be able to move the body and parts.

 

No normal animal protein is toxic to humans.

 

Fat

The major functions of fat is energy production, energy source, energy storage and padding delicate organs in the body.

 

We have tens of kg of fat in the body. We can store several hundred kg of fat.

 

Fats consist mainly of triglycerides (three fatty acids connected to a glycerol molecule) but there are free fatty acids, monoglycerides, diglycerides, phospholipids as well as other lipids and lipid like molecules.

 

The major composition of fat is shy of 50 % saturated fats (SAT), shy of 50 % monounsaturated fats (MUFA) and the rest, about 5 %, is polyunsaturated animal fats (PUFA) with carbon atom numbers of at least 20 C.

 

The fatty acid composition is about the same for all warm blooded animals as they have the same body temperature around 37ºC. This is because fats must have a correct melting temperature for proper function. Arctic fish have much higher PUFA concentration as PUFAs have much lower melting temperature compared to animal fat.

 

This is shown beautifully by placing butter, olive oil and canola oil taken from the fridge on a plate and let it sit on the table. The canola oil is still liquid at fridge temperature, the olive oil is partly solid at fridge temperature and the butter is definitely solid at fridge temperature.

 

At room temperature both oil fats are liquid but butter is solid. When temperature rises above 30º C then also butter melts into liquid form.

 

So arctic fish must have higher concentration of PUFA to survive due to it’s lower organism temperature.

 

Salmon has 3.3 g PUFA and bacon has 2.8 g PUFA. This means that 100 g salmon can be replaced by 118 g bacon to achieve the same amount of PUFA. Also 100 g salmon can be replaced by 35 g lard.

 

So as long as we eat animal fat we will always get enough PUFA.

 

We also have to realize that vegetable PUFAs usually are nonelogable to animal long chain PUFAs in our body. Vegetable omega-6 are inflammation producing and if more than 20 g per day also causing cancer, well known by the old transplantation surgeons as well as Livsvmedelsverkets civil servants.

 

Animal fats in the form of phospholipids are essential to our cell membranes as they separate cells and organelles form each other and intracellular as well as extracellular environments. Also in all membranes there are about the same number of cholesterol molecules as phospholipids molecules to make the cellular and other membranes stable and supportive.

 

So the lipids of all kinds are essential to life.

 

Lipids and fats are also necessary making up the cushioning around delicate structures in the body. Fat is also an excellent energy source for the body.

 

Also fat tissue and fat cells in muscles is normally the major source of acetylcoenzyme A (AcCoA or activated acetic acid) which is the only energy producing molecule in the cellular mitochondria. See the Krebs cycle for more biochemical and energy details.

 

This means that all animal fat are essential to us and they are nontoxic as they consist of the same fats in the same proportions as our own fat. The animal fats also requires the least remodeling and exchange due to the same reason.

 

Fat is also the most energy dense macronutrient so persons can eat smaller portions to have enough energy. Also, fat is the most satisfying macronutrient.

 

Carbohydrates

 

Carbohydrates are the third kind of macronutrients. Carbohydrates consists of sugars. So carbohydrates are equivalent to sugars.

 

Fibers consists of polymers of glucose that no warm blooded animal can digest. Herbivores are using microbes to digest fibers like cellulose to short chain fatty acids, less than 7 carbon atom long chains. Those short or volatile fatty acids are completely water soluble and can thus be taken up directly in the blood and then transported directly to the liver for further use and can enter the central metabolism in the body, more about that later.

 

Humans are unable to digest fibers as we lack the fermenting microbes and fermentation tank like the 1 hL four parted ventricle of a normal cow.

 

So fibers lack energy in humans, easily contolled by eating pure fibers and check the lack of hydrogen gas production the digestion of fibres always cause.

 

Starches all consists of polymers of glucose easily degraded in the intestinal tract by a lot of enzymes down to single units of glucose.

 

Other common disaccarides are sucrose (consists of glucose and fructose), lactose (glucose and galactose), maltose (glucose and glucose). Disaccarides can not be absorbed by the intestines, so they have to be digested by common enzymes to their monosaccarides. Those monosaccharides like glucose (most abundant), galactose (animal sugar) and fructose (vegetable sugar).

 

A human of 70 kg has a low glucose concentration of 3-6 mmol/L in the blood to supply the Red Blood Cells (RBC) with energy as RBC lack mitochondria.

 

The normal blood concentration of 3-6 mmol/L is equal to the amount of 1.5 to 3 grams of glucose in the total blood volume of 5.6 L.

 

The RBC utilize glucose anaerobically via the RBC-specific Rapoport-Luebring pathway including 2,3-diphosphoglycerate (2,3-DPG) that is required to release oxygen from the hemoglobin molecule. Then the 2,3-DPG is transformed to lactic acid and 2 molecules energy rich ATP.

 

When having 5 g glucose, without insulin and a theoretical immediate uptake, the glucose level will increase to around 15 mmol/L which is a toxic concentration of glucose.

 

By having more than 15 to 25 g glucose in the blood (>30-50 mmol/L) the normal person will very shortly die from acute glucose intoxication.

 

Glucose and fructose are toxic at higher concentrations than 6 mmol/L the monosackarides are nonenzymatically glycating the lysine amino acid residue in proteins and thus changing the morphology and may change the function of the protein.

 

The most famous glycated protein is HbA1c where the attached glucose/fructose molecule destroys the oxygen transport function of hemoglobin.

 

This glycation of proteins is the major problem with carbohydrates.

 

When the person has carbohydrates the blood glucose rises immediately which releases insulin. The insulin has a lot of actions in order to normalize the blood glucose level. The insulin slows down the intestinal uptake of nutrients, inhibits the AcCoA production from fat and protein because the monosaccaride concentration just has to be normalized as the body otherwise will die from acute monosaccaride intoxication.

 

Read more about the wonderful insulin molecule and functions at reference below [2] .

 

There are no essentiality of eating carbohydrates. All sugars the human body needs is happily produced by the liver. And the liver can always produce enough sugar.

 

The logic behind NNR4 recommendation to have 50-60 % of the energy (%) is totally missing. As excess of carbohydrates increase the insulin level for long times thus decreasing the fat energy expenditure and that carbohydrates are partly converted to fat and thus increasing body weight the amount of carbohydrates has to be minimized.

 

It is also after the introduction of NNR with a in the 1980-ies that the epidemy of diabetes and obesity rose inexplicably. The only change in the environment is the exchange of fat to carbohydrate as major energy source.

 

It’s OK to have vegetables ad libitum as they do contain small absolute amounts of carbohydrates.

 

The amount of fruit should be limited due to the fact that most fruit contains the same amount of sugars as soft drinks, about 10-12 grams per 100 g

 

The amount of grain and grain products like bread, pizza, pasta contains 30-90 g carbohydrates per 100 g of grain product. Thus grain products should be restricted to small amounts realizing that many persons are gluten intolerant and should then be totally excluded.

 

 

Energy

The intake of energy is recommended by NNR4 to 2.5 Mcal (2 500 kcal) for women and 3.2 Mcal for men. As long as the carbohydrate intake is less than 100 g per day the population will normalize the body weight. So this recommendation can be propagated to NNR5.

 

All weight reduction diets have a common denominator:

Carbohydrate reduction.

 

Just compare a NNR4 diet with 50 E% carbohydrates and 0.8 Mcal to a low carbohydrate diet with 2.5 Mcal and 16 E% carbohydrates.

 

This means that the NNR4 starvation diet contains 100 g carbohydrates, the person loses weight, is always hungry and the person will starve to death, usually within a year.

 

On the other hand the low carbohydrate diet contains 100 g carbohydrates, the person loses weight, is always satisfied and the person can eat that kind of food for decades.

 

Both diets are shown to give the same weight decrease in the short term but the famine dieter is unable to continue for more than a few months or the diet will be lethal. The lowcarber can have delicious food for decades and keep the weight loss.

 

The first law thermodynamics tells us that in an isolated system energy in equals energy out.

 

But the human body is not an isolated system. And we have to realize that we also have to obey the second law of thermodynamics as well as the hormonal control of the body. This means that the body can regulate the efficiency between 0 and up to less than 100 %. The most part will be heat.

 

We also have to realize that fat does not increase the insulin level. Excess protein may and carbohydrates always increase the insulin level to normalize the glucose level. So insulin changes the normal fat burning metabolism to carbohydrate burning and fat generating metabolism to survive.

 

The obesity care have tried to have obese patient to eat less and run more. This hypothesis has been disproven many times during the last 35 years. But it seems that the obesity care units were unable to realize these results.

 

So by having ad libitum food consisting of normal amounts of protein, maximum 100 g of carbohydrates and 70-90 E% mostly animal fat the population will in a few years regain normal weight, decrease disease burden and a better general health.

 

NNR5 macronutrient recommendation

 

Proposal of NNR5 nutrition recommendations to healthy individuals based on the old trustworthy sciences physiology, biochemistry and endocrinology:

 

Summary of NNR 2012 recommendations to healthy individuals

 

NNR 2012 recommend an adequate intake of essential nutrients of protein, fat, minerals and vitamins.

 

NNR 2012 recommends a normal daily intake of essential animal protein of at least 0,5 g/kg bodyweight.

 

NNR 2012 recommends an upper limit of 100 g of carbohydrates/sugars per day [3].

 

NNR 2012 recommends a sufficient intake of essential fats to satisfy the energy and metabolic requirements.

 

NNR 2012 recommends an upper limit of 20 g per day of vegetable omega-6 polyunsaturated fats. [4], [5].

 

NNR 2012 recommends an upper limit of fiber intake of 25 g per day to an adult and an upper limit of 0,35 g/kg to a child.

 

NNR 2012 recommends an upper limit of one fruit per day.

 

 

 

The conclusion of food consumption changes between NNR4 and NNR5 to promote health in Nordic populations

                                                                            

Increase                     .                         Unchanged               .                Limit to per day                   .

Fat, preferably animal    ......................Protein from meat     .   ....Limit Carbohydrates to 100 g.

                                      .........................Vegetables                 . .... Limit Omega-6 PUFA to 20 g.

                                                                        .............................................Limit fiber to 25 g                  .

                                                                        .............................................Limit fruit to one                    .

 

 

 

 

 

Background information for NNR 2012 recommendations

From NNR5

Recommendation for carbohydrates, fibre and added sugar

http://www.slv.se/upload/NNR5/NNR5%20Carbohydrates.pdf

 

 Mikael Fogelholm

The data on health effects of dietary fibre and fibre-rich foods are very strong.[6]

Recommendations in NNR 2012:

Adults: Intake of dietary fibre should be at least 25-35 g/d,

i.e. approximately 3 g/MJ.

Children: An intake corresponding to 2-3 g/MJ is appropriate

for children from 2 years of age. From school age the

intake should gradually increase to reach the recommended

adult level during adolescence.

 

Comment

According to present recommendations in NNR4 children should have about double the amount of fiber per kg bodyweight as an adult. Adults are recommended about 30 g/day or 0,4 to 0,6g/kg while children are supposed to have 3 g/MJ which will be 12 g fiber per day or 1,2 g/kg. This is due to recommendations are associated to the amount of energy eaten instead of kg bodyweight. Children have a higher energy intake per kg bodyweight due to the fact that they need more energy to grow and need more energy to compensate for a larger skin surface heat loss per kg bodyweight than adults.

 

As fibers are associated to an increased risk of colon cancer [7], [8], there is an increased risk that children and adults get colon cancer with the present recommendations.

 

So the new recommendations should be:

 

NNR 2012 recommends an upper limit of fiber intake of 25 g per day to an adult and an upper limit of 0,35 g/kg to a child.

 

Mikael Fogelholm

Intake of added sugars should be kept below 10 E%.

Limitation of the intake of added sugars from particularly sugar-sweetened beverages and sugar–rich foods is recommended in order to reduce the risk for type 2 diabetes, weight gain and dental caries.

•A limitation of the intake of added sugars is also necessary to ensure an adequate intake of essential nutrients and dietary fibre, especially in children and adults with a low energy intake.

 

Comment

In NNR4 there is a recommendation to keep intake of added sugars to below 10 E%.

 

It seems that the NNR4 have disregarded that carbohydrates and sugar are synonyms as they recommend a limit of carbohydrates in the form of “added sugar” but recommend 50-60 E% of carbohydrates in a day.

 

 It is good that NNR 2012 will limit the intake of sugar to ensure an adequate intake of essential nutrients. All kinds of carbohydrates consists of sugar which are nonessential and contains 1 to 1/1 000th (or less) of minerals and vitamins compared to food of animal origin [9]. Then we have to re-establish what the essential nutrients are.

 

So the new recommendations should be:

 

NNR 2012 recommend an adequate intake of essential nutrients of protein, fat, minerals and vitamins, preferable in the form of animal proteins and fats which contain enough minerals and vitamins.

 

Vegetables are insufficient in amino acids, all fatty acids including long chain polyunsaturated fatty acids, minerals and vitamins [10] but vegetables are excellent to improve the visual impression of food. Fruit with 10 % sugar content may decrease to maximum one fruit per day

 

Also, the NNR 2012 finds no justifications to include a diet-based recommendation for GI in NNR.

 

Comment

This is correct as GI is a partial and indirect measurement of carbohydrates, we are just measuring the glucose level in the blood, we are not measuring all other sugars like fructose, galactose nor are we measuring the continuous insulin level that delays the uptake of sugars in an attempt to normalize a too high blood glucose level.

 

Also, the SBU report Mat vid diabetes of 2010 found no justification to include a diet-based recommendation for GI

 

So an added recommendations should be:

 

NNR 2012 finds no justifications to include a diet-based recommendation for GI in NNR.

 

Also, NNR4 recommends specific “quality” of fat.

As all mammals have the same temperature of 37ºC, they all have the same animal fat composition with the same melting temperature for correct function. This means animal fat has shy of 50 % saturated fat, shy of 50 % monounsaturated fat and about 5 % polyunsaturated fat. This is the ideal mixture of fats and the fat has a correct melting temperature to support correct function of fat in tissues and cell membranes. 

 

 

 

Mora 2013-04-08

 

Björn Hammarskjöld

M.D., Ph.D.

Independent scientist in Nutrition



[1] Livsmedelsverkets databas modersmjölk

[3] Based on old fashioned physiology, biochemistry and endocrinology, e.g. Lagerholm, J., Hemmets Läkarebok, Fröléen & Comp, Stockholm, 1921 and Ganong, W., Medical physiology, Lange Medical Publications, Los Altos, CA, USA 1971.

[4] Wirfält, Mattisson et al Postmenopausal breast cancer is associated with high intakes of omega6 fatty acids (Sweden). Cancer Causes Control. 2002 Dec;13(10):883-93.

[5] Ramsden, Zamora et al Use of dietary linoleic acid for secondary prevention of coronary heart disease and death: evaluation of recovered data from the Sydney Diet Heart Study and updated meta-analysis. BMJ 2013;346:e8707 http://www.bmj.com/highwire/filestream/629053/field_highwire_article_pdf/0/bmj.e8707

[6] SBU rapport Mat vid diabetes 2010. No scientific support for NNR4 recommendations.

[7] Park Y, et al. Dietary fiber intake and risk of colorectal cancer: a pooled analysis of prospective cohort studies. JAMA 2005; 294: 2849-2857.

[8] Fuchs CS, et al. Dietary Fiber and the Risk of Colorectal Cancer and Adenoma in Women. New Engl J Med 1999; 340: 169-176, 223-224.

[9] Livsmedelsverkets databas http://www7.slv.se/Naringssok/

[10] Livsmedelsverkets näringssök http://www7.slv.se/Naringssok/


Livsmedelsverkets usla kostråd för barn

Ett ammande ban äter en perfekt anpassad kost, bröstmjölk, utvecklad sedan årmiljoner. Den innehåller 8 % av energin (E%) i form av protein, 36 E% animaliska specialkolhydrater och 56 E% animaliskt fett. Proteinet räcker för att barnet under första året ökar 50 % i längd, laktosen är tillräckligt för att barnet ska tredubbla sin födelsevikt under första året och fettet är till för att barnets hjärna ska utvecklas normalt. Detta är en kost som är utprovad av evolutionen som perfekt för våra barn.

 

Sedan har nyfikna barn begärt att få lägga till den mat som föräldrarna äter, men amningen har funnits med så länge barn och moder är överens.

 

Sedan kommer Livsmedelsverket och lägger sig i hur barn ska äta utan någon som helst vetenskap bakom sina råd. Livsmedelsverkets till synes helt okunniga tjänstemän anger att barn ska ha minskande fettmängder från sex månaders ålder.

 

De skriver på :

     Startsida > Mat och näring > Maten och vår hälsa > Hjärt- och kärlsjukdom >Barns matvanor och...

     Barns matvanor och riskfaktorer för hjärt- och kärlsjukdom och diabetes

 

     ” Rekommendationer om fettintag hos barn

     De nordiska och svenska rekommendationerna om ett successivt minskat fettintag till små barn efter de

     första sex månaderna (30-45 energiprocent (E%) för 6-11 månader gamla barn, 30-35 E% för barn 12-23

     månader och 25-35 E% för barn över 2 år) har ibland ifrågasatts med argumentet att barn behöver mycket

     fett för att utvecklas. Studier visar dock att fettintag enligt dessa rekommendationer medför normal tillväxt

     och normal neurologisk utveckling hos barnen (Obarzanek et al. 2001; Rask Nissilä et al. 2002; Lagström

     et al. 2008). För att läsa de internationella rekommendationerna om fettintag för barn, se länk till höger.”

 

Så jag läser Lagströms et al artikel från 2008:

Lagström H, Hakanen M, Niinikoski H, Viikari J, Rönnemaa T, Saarinen M, Pahkala K, Simell O. Growth patterns and obesity development in overweight or normal-weight 13-year-old adolescents: the STRIP study. Pediatrics. 2008;122(4):e876-83. http://www.ncbi.nlm.nih.gov/pubmed/18829786

http://pediatrics.aappublications.org/content/122/4/e876.full.pdf

 

Vad finner jag? En artikel som ur vetenskaplig synpunkt är förskräckligt dålig, nej, USEL och som inte stödjer Livsmedelsverkets påstående ”Studier visar dock att fettintag enligt dessa rekommendationer medför normal tillväxt och normal neurologisk utveckling hos barnen”.

 

Man engagerar 1 062 barn vid 5 månaders ålder och 540 randomiseras till en behandlingsgrupp och 522 till en kontrollgrupp i den så kallade STRIP-studien.

 

Behandlingsgruppens föräldrar fick stränga order att begränsa mängden fett i maten till NNRs rekommendationer. Kontrollgruppen fick äta fritt.

 

Sedan följer man barnen till 13 års ålder. Då fanns det 541 barn av ursprungliga 1 062 kvar varav 457 var normalviktiga och 84 överviktiga.

 

Men ingenstans står det sedan hur många av de normalviktiga och hur många av de överviktiga som tillhörde behandlingsgruppen, och hur många av de normalviktiga och hur många av de överviktiga som var i kontrollgruppen?!

 

Här har detta försök kapsejsat totalt på två grunder

  1. Bortfallet är 49 %. Då går det inte att bearbeta med sunda statistiska metoder längre.
  2. Fortsatta redovisningen delar inte upp behandlingsgruppen och kontrollgruppen. Man vet med andra ord inte om någon av kosterna ”medför normal tillväxt och normal neurologisk utveckling hos barnen”. Övervikt är ju inte riktigt normal utveckling hos barnen.

 

Jag tycker att det är förskräckligt att Livsmedelsverket förvanskar den forskning som man hänvisar till.

 

Livsmedelsverket hävdar också att deras kost stämmer överens med internationella riktlinjer.

 

        ”För att läsa de internationella rekommendationerna om fettintag för barn, se länk till höger.”

 

Så jag slår upp EFSAs råd från 2010. De skiljer sig från Livsmedelsverkets råd.

EFSA hävdar 40 E% fett mellan 6 och 12 månaders ålder, 35-40 E% under barnets andra och tredje år.

Livsmedelsverket motsvarande råd är 30-45 E%, 30-35 E% andra året och 25-35 E% under tredje året och därefter.

 

Jag tycker att det är förskräckligt att Livsmedelsverket förvanskar de internationella rekommendationerna (EFSA) som man hänvisar till.

 

Med andra ord så bryter Livsmedelsverket mot grundlagens första kapitels 9 § när man inte är vare sig saklig eller objektiv.

 

Så jag ställer mig frågan: Var finns kunskapen inom Livsmedelsverket?

 

Detta är inte första gången då man synar Livsmedelsverket att verket har fel. Jag vill dock påpeka att en del hos Livsmedelsverket är alldeles korrekt. Men sedan slirar man alldeles för ofta på sanningen. Myndighet får INTE slira på sanningen. Aldrig någonsin. Salt, fett, kolhydrater, D-vitamin är områden där Livsmedelsverket har synnerligen stora kunskapsbrister för att inte säga total aologia ( a = avsaknad av, ologi = kunskapsområde, exempel fysiologi, biologi, endokrinologi).

 

Så jag får väl göra som vanligt, det man fick lära sig i det militära:

”Giv akt! Jag tar befälet! Gör om! Gör rätt! Manöver!”


Sockersjuka orsakas av socker!

Äntligen!

 

Nu finns det en utmärkt studie med populationsdata som hävdar att sockerkonsumtionen är en linjär dos-svar funktion för sockersjuka.

 

Ju mer socker man äter desto större frekvens av sockersjuka.

 

Det är Robert Lustig från UCSD som är en av författarna till en ny studie som är publicerad i PLOS One den 27 februari 2013.

 

The Relationship of Sugar to Population-Level Diabetes Prevalence: An Econometric Analysis of Repeated Cross-Sectional Data

Sanjay Basu, Paula Yoffe, NancyHills, Robert H. Lustig

 

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0057873

 

Det räcker med 150 kcal socker (=37,5 g socker) mer per dag för att öka förekomsten av sockersjuka med 1,1 % med ett p-värde (sannolikheten att slutsatsen skulle vara fel) på p<0,001. Sannolikheten att slutsatsen är korrekt är då mer än 99.9 %.

 

Likaså minskar man förekomsten av sockersjuka med 1,1 % för varje 37,5 g socker man låter bli att äta per dag. (under noll gram per dag kan man givetvis inte komma).

 

Slutsatsen av Lustigs med flera författare är att man ska minimera mängden socker man äter för att slippa få sockersjuka typ 2.

 

Så nu är det bara att vänta på nästa studie där det visas att överskott på kolhydrater orsakar sockersjuka. Den linjen är nog litet flackare än linjen för socker eftersom socker (sackaros, HFCS (High Fructose Corn Syrup) och modifierad majsstärkelse) innehåller fruktos (fruktsocker) som är 5-10 gånger giftigare än glukos.

Jag äter minimalt med socker och äter helst under 100 g kolhydrater per dag. Tänk om alla skulle göra det, overvikt, sockersjuka skulle minska en hel del.

 


Short answer to NNR5 Sodium as salt.

Björn Hamarskjöld’s short answer to NNR5 Sodium as salt.

 

The NNR5 public consultation has a very simple but correct view on potassium.

 

So I just did the same as the NNR5 on potassium with all references to potassium exchanged to sodium.

 

Here it is!

 

 

Sodium – NNR 2012 public consultation

Table of content

Sodium ................................................................................page 1

Introduction ........................................................................ page 1

Dietary sources and intake ................................................. page 1

Physiology and metabolism ............................................... page 2

Requirement and recommended intake .............................. page 2

Reasoning behind the recommendation ............................. page 2

Upper intake levels and toxicity ......................................... page 3

References ....................................................................... page 3 - 4

 

Sodium

 

 

 

Children

 

Sodium intake g/day

Women

Men

2-5 y

6-9 y

10-13 y

Recommended intake (RI)

 10-25

 10-25

 3-15

 5-20

 7.5-20

Lower intake level (LI)

>7.5

>7.5

>3

>5

>6

Upper intake level (UI)

No UL

No UL

No UL

No UL

No UL

 

Introduction

The major proportion of the sodium in the body (98 %) is found outside of the cells and sodium is the quantitatively most important extracellular cation. Intracellular sodium, which constitutes the remaining 2 %, is important for regulating the membrane potential of the cells, and thereby for nerve and muscle function, blood pressure regulation etc. Sodium also participates in the acid-base balance.

 

1 mmol sodium is equivalent to 23 mg.

 

Dietary sources and intake

Important sodium sources in the Nordic diets are ordinary normally salted food, and milk products.

The average dietary intake ranges from 10 to 25 g per day (see Chapter 24 XX Intake of Vitamins and minerals in Nordic countries).

 

Physiology and metabolism

The absorption of sodium is effective and about 90 % of the dietary sodium is normally absorbed from the gut. The sodium balance is primarily regulated by renal excretion in urine. A small proportion can be lost in sweat.

 

Requirement and recommended intake

Sodium deficiency can develop as a consequence of increasing losses from the gastrointestinal tract and kidneys, e.g. during prolonged diarrhoea or vomiting, and in connection with the use of laxatives or diuretics. Sodium deficiency due to low dietary intake alone is not uncommon, due to the widespread occurrence of low salt in foods propaganda. Treatment with diuretics without sodium compensation or sodium sparing diuretics can, however, lead to deficiency.

Hyperaldosteronism, hereditary defects of renal salt transporters, such as Bartter’s syndrome and Gitelman’s syndrome, and excessive consumption of licorice increase sodium retention and potassium excretion and may lead to hyponatremia.

Symptoms of sodium deficiency are associated with disturbed cell membrane function and include muscle weakness and disturbances in heart function, which can lead to arrhythmia and heart seizure. Mental disturbances, e.g. depression and confusion, can also develop.

The losses of sodium via the gastrointestinal tract, urinary excretion and sweat comprise about to 25 g/d (150-400 mmol), but 7,5 g/d (130 mmol) is needed to avoid low plasma levels and loss of total body sodium in adults.

 

The sodium intake may affect sodium balance and sodium intakes of 10-30 mmol/d may induce water retention and an increase in blood pressure, both in normotensive and hypertensive subjects.

 

An inverse relationship between cardiovascular death and sodium excretion was also observed. A number of studies of both normotensive and hypertensive subjects indicate that an increased sodium intake as supplements can lower blood pressure and increase urinary sodium excretion.

 

The lack of clear dose-response observed in the studies is due to physiology and homeostasis.

 

An inverse association between sodium intake and the risk of stroke has been shown in most

cohort studies

 

Reasoning behind the recommendation

The recommended intake of sodium in NNR 2004 was based on flawed data on the effect of sodium on blood pressure. Several clinical trials and population surveys published thereafter support the finding that a diet rich in sodium have a favourable effect on blood pressure.

 

The reference values are increased compared to NNR 2004, since there are new scientific data to justify major changes. The recommended intakes are set at 10-25 g/d (170-400 mmol) for men and women. The figure for women also includes pregnant and lactating women. It should be pointed out that sodium intakes over and above these values might have further beneficial effects.

 

The reference values for children and adolescents are extrapolated from adult values based on needs for growth and adjusted for body weight.

 

The lower limit is estimated to 7.5 g/d (130 mmol) for adults.

 

Upper intake levels and toxicity

Sodium chloride has been associated with acute poisoning in humans. Case reports have described heart failure, cyanosis and cardiac arrest after ingestion of high doses of sodium chloride tablets.

 

Gastrointestinal effects have also been described after chronic ingestion of sodium chloride in case studies and supplementation studies. The occurrence and severity of the effects depend on a number of factors of which formulation of the preparation, dose and gut transit time and of course enough water intake seem to be most important.

 

Dietary sodium has not been associated with any negative effects in healthy subjects. Prolonged high sodium intakes from diet and sodium-containing salt has not been shown to cause hypernatraemia as long as the person can drink pure water and no effect on heart function in subjects with renal insufficiency or impaired kidney function. Sea water without enough dilution with pure and salt free water is shown to be lethal due to the kidneys inability to excrete sodium without enough water.

 

The available data are insufficient to set an upper level for dietary sodium. Supplemental intakes up to 50 g/d are generally not associated with overt adverse effects.

 

 

References

Alderman M N, Cohen H, Madhavan S. Dietary sodium intake and mortality: the National Health and

Nutrition Examination Survey (NHANES I). Lancet 1998; 351: 781-85

Whalley H. Salt and Hypertension: consensus or controversy? Lancet 1997; 350: 1686.

Graudal N A, Gallee A M, Garred P. Effects of Sodium Restriction on Blood Pressure, Renin, Aldosterone, Catecholamines, Cholesterols, and Triglyceride : A Meta-analysis. JAMA 1998; 279:1383-1391

Merlo J, et al. Incidence of myocardial infarction in elderly men being treated with antihypertensive drugs:

population based cohort study. Br Med J 1996; 313: 457-61

Bloom W L. Inhibition of salt excretion by carbohydrate. Arch Int Med. 1962; 109: 26-32.

Friedman G D, et al. Precursors of essential hypertension: body weight, alcohol and salt use, and parental

history of hypertension. Prev Med 1988; 17: 387-400

Appel LJ, et al. Does supplementation of diet with "fish oil" reduce blood pressure? Arch Int Med, 1993;153: 1429-38

Connor W E. Diabetes, fish oil, and vascular disease. Ann Int Med 1995; 123: 950-52.

Alderman M. Data linking sodium intake to subsequent morbid and fatal outcomes must be studied. Br Med J 1997; 315: 484-5

Le Fanu J. Cross cultural studies such as Intersalt study cannot be used to infer causality. Br Med J 1997; 315: 484

 


Comments to the Public consultation on salt in NNR5

Public consultation on the draft proposal for the first part of the Nordic Nutrition Recommendations 2012

-         Sodium as salt

 

Comments to the Public consultation on the draft proposal for the first part of the Nordic Nutrition Recommendations 2012 the part of Sodium as salt

 

The text in the Public consultation on the draft proposal for the first part of the Nordic Nutrition Recommendations 2012 the part of Sodium as salt is definitely wrong from a scientific standpoint and must be replaced.

 

The parts in lines 24-488 needs to be rephrased to be correct from the points of views in physiology, biochemistry and endocrinology.

 

So the proposed wordings are in the added proposition.

 

Comments regarding the NNR5 about salt

It is interesting that the NNR5 experts are referring to an older EFSA report from 1993 [1] (lines 492-4) instead of the EFSA report of 2005 in the reference list above. This clearly shows that the NNR5 experts seems to avoid modern and relevant references that oppose the experts hypothesis that salt is a health hazard

 

It seems that the NNR5 experts looking into the salt issue seems to be lacking fundamental knowledge in human physiology, biochemistry and endocrinology as they seem to be totally ignorant in these areas of knowledge.

 

The NNR5 experts must also, if they had done their homework properly, know that the nutrition experts of the US Department of Agriculture already 1999 knew that salt reduction had no positive effect on blood pressure. This is according to a transcribed taped discussion readable on the Health departments web site [2]

 

Also, in an article Stolarz-Skrzypek K et al write in their Conclusions :

 

“Conclusions In this population-based cohort, systolic blood pressure, but not diastolic pressure, changes over time aligned with change in sodium excretion, but this association did not translate into a higher risk of hypertension or CVD complications. Lower sodium excretion was associated with higher CVD mortality.”

 

“Lower sodium excretion was associated with higher CVD mortality” is interpreted by associated professor Wulf Becker in Livsmedelsverkets Protokoll nr 51 (Minutes number 51) at a meeting with expertgruppen för Kost- och hälsofrågor on 2011-09-20 §7 page 3 [3] 

 

“En annan meta-analys av Stolarz-Skrzypek K et al visar att högt saltintag är associerat med ökad risk för stroke och hjärt-kärlsjukdom. [4] http://jama.ama-assn.org/content/305/17/1777.full.pdf+html?etoc

”(Another meta analysis by Stolarz-Skrzypek K et al shows that a high salt intake is associated to increased risk for stroke and cardio-vascular diseases)”

 

Becker here seems to violate the Swedish Constitution 1st chapter 9th §, both the matter of factness and the objectivity criteria.

 

I’d rather see Becker declare other reasons than infringement of the Swedish Constitution for his statement. But the facts remains, Becker told the expert group a conclusion contrary to the conclusions in the article.

 

Also, there are quite a few articles stating that a low salt intake increases the CVD mortality, e.g. Alderman et al [5], Whalley [6] and Cohen [7].

 

Dr Helen Whalley wrote in Lancet that the analysis of NHANES I showed that eating a low salt diet showed a 20 % increase in CVD.

 

In May 2006 Dr Hillel Cohen showed data from NHANES II and 2008 data from NHANES III describing that eating less than five grams of salt increased the risk of coronary disease more than 50 %.

 

Again, some of the crucial articles regarding salt and hypertension are missing, e.g. the Cochrane review from 2011 [8].

 

The conclusion in the Cochrane abstract is:

“Sodium reduction resulted in a 1 % decrease in blood pressure in normotensives, a 3,5 % decrease in hypertensives, a significant increase in plasma renin, plasma aldosterone, plasma adrenalin and plasma noradrenalin, a 2,5 % increase in cholesterol and a 7 % increase in triglycerides. In general these effects were stable in studies lasting for 2 weeks or more.”

 

This means that the decrease in blood pressure is nonsignificant but there are significant increase in hypertensive and also sodium resorption hormones like plasma renin, plasma aldosterone, plasma adrenalin and plasma noradrenalin as the sodium level in the blood decreases while eating too low amounts of salt. When the salt level in the blood decreases below 125 mmol/L the kidneys try to restore a higher salt concentration by decreasing the blood volume and then the extra cellular volume decreases as well thus lowering the blood pressure. The homeostasis of the body tries to restore the volume by increasing ADH which dilutes the blood again by lowering sodium concentration threatening the homeostasis and life of the patient.

 

This condition is called SIADH or SISWI, easily corrected by letting the patient eat salt and drink water and the body will restore homeostasis.

 

I.V. infusion of salts is another alternative but that usually takes longer time and is more dangerous than the oral route.

 

A third option is to use ADH receptor blockers like tolvaptan, a vasopressin antagonist. But there are not much of an effect as 60 % of the patients treated with tolvaptan had normal sodium excretion after 30 days while 26 % in the placebo group had normal sodium excretion. According to Läkartidningen 2012 [9] about 19 % of all patients with hyponatremia died of sodium deficiency despite treatment with tolvaptan. But they did not get enough sodium in their diet.

 

The first National Health and Nutrition Examination Survey (NHANES I) established baseline information during 1971-75 in a representative sample of 20,729 American adults aged twenty-five to seventy-five. Of these, 11,348 underwent medical and nutritional examination.

They were rechecked in 1992. By then there had been 3,923 deaths, of which 1,970 were due to a cardiovascular disease. Comparing salt intakes, this study found that all-cause mortality was inversely related to salt intake. In other words, those who ate the most salt had the fewest deaths — from any cause. And the same was found for cardiovascular deaths. Dr Helen Whalley writing a feature in the Lancet, talks of the continuing debate on the supposed association between salt and hypertension. She points out that an analysis of the NHANES I survey shows that 'the heart attack fatality rate among those on low-sodium diets was 20% higher that those on normal diets.'[10]  She goes on to report a study on the Salt Institute's website on the impact of long-term salt reduction. It found 'a four-fold increase in heart attacks among those on low-salt diets'.

 

In 1998 a large meta-analysis was published in an attempt to resolve the controversy [11]. Fifty-eight trials published between 1966 and the end of 1997 were reviewed to estimate the effects of reduced sodium intake on systolic and diastolic blood pressure, particularly as in recent years the debate has been extended by studies indicating that reducing sodium intake has adverse effects. They found that reducing salt intake did reduce blood pressure slightly, but that it increased LDL cholesterol, the so-called 'bad' cholesterol. They conclude that 'These results do not support a general recommendation to reduce sodium intake.

 

Salt restriction research is biased

All those studies showing a decreased blood pressure with decreased salt intake are biased. They all have one arm with a low salt level like 6-9 gram salt per day and another arm with extremely low salt, around 3 grams per day. The findings are a slight decrease in blood pressure due to hypovolemia despite increase in the levels of hypertensive hormones like renin, aldosterone, adrenalin and noradrenalin. But all trials have seemingly actively forgotten the third arm, giving patients 20-30 g salt per day. That third arm will have the same blood pressure as the one with 6-9 g salt. This is because the glomeruli are filtering out about 1 g salt per minute and thus the blood pressure can not increase due to the fact that there is no salt retention, everything is filtered out. Still, the main problem for the kidneys is the reabsorption of sodium using at least three blood pressure increasing and sodium retention hormones.

 

But it is also interesting that patients with diabetes having the highest intake of salt have less insulin resistance.

 

According to physiological research from 1970th it is shown that newborn children in the colostrums gets very high concentrations of sodium during the first day of life corresponding to more than 60 grams salt for a 70 kg adult [12]. Within a fortnight the breastmilk contains sodium according to 10 grams of salt to an adult.

 

Conclusion

The old fashioned physiology, biochemistry and endocrinology shows that salt is an essential micronutrient in the human body. Normal salt intake in the Swedish population is normally at least nine and more than eighteen grams of salt per day according to daily urine excretion. Manipulation of salt intake outside the physiological normal boundaries between ten and 100 grams of salt intake is shown to increase disease and premature death.

 

Requirement and recommended intake 

Adults

Adults are advised to eat at least ten grams of salt as long as the food is not too salty to your taste. Also, drink normally 1-3 liters of water accordingly to quench the thirst.

Children

Children are advised to eat the same food as parents do, as always have been the case.

 

Reasoning behind the recommendation

Normal physiology has shown that salt is an essential micronutrient that has to be replenished in excess for the body’s homeostasis. Also, enough pure water is recommended to support the excretion of excess sodium.

 

Lower intake levels

There are severe dangers of serious disease or even premature death of salt deficiency if the intake is lower than recommended above.

Upper intake levels and toxicity

As has been shown above there is no need to issue an upper intake level from dietary sources as salt is excreted passively and the level of salt in the body is maintained actively by the kidneys and hormones.

 

There has not been shown any toxicity when sodium is ingested from dietary sources

 

 

Mora November 25, 2012

 

Björn Hammarskjöld

M.D., former consultant in Pediatics

Ph.D. in Biochemistry

Independent scientist in Nutrition



[1] Commission of the European Communities. Reports of the Scientific Committee for Food 492 (Thirty-first series). Nutrient and energy intakes for the European Community. Luxembourg, 493 1993.

[2] http://www.health.gov/dietaryguidelines/dgac/pdf/dg0908.pdf pp 412 ff  

This site is coordinated by the Office of Disease Prevention and Health Promotion, Office of the Assistant Secretary for Health, Office of the Secretary, U.S. Department of Health and Human Services.

[5] Michael H. Alderman; Shantha Madhavan; Hillel Cohen; Jean E. Sealey; John H. Laragh Low Urinary Sodium Is Associated With Greater Risk of Myocardial Infarction Among Treated Hypertensive Men Hypertension. 1995;25:1144-1152.

[6] Whalley H. Salt and Hypertension: consensus or controversy? Lancet 1997; 350: 1686

[7] Cohen HWHailpern SMFang JAlderman MH. Sodium intake and mortality in the NHANES II follow-up study. Am J Med. 2006 Mar;119(3):275.e7-14.

[8] Cochrane Database Syst Rev. 2011 Nov 9;(11):CD004022

[9] Olsson, Öhlin, ABC om hyponatremi, Läkartidningen No 17-18, 2012, p 888-92

[10] Whalley H. Salt and Hypertension: consensus or controversy? Lancet 1997; 350: 1686

[11] Graudal N A, Gallee A M, Garred P. Effects of Sodium Restriction on Blood Pressure, Renin, Aldosterone, Catecholamines, Cholesterols, and Triglyceride : A Meta-analysis. JAMA 1998; 279:1383-1391

[12] Aperia, Broberger, Zetterström i Acta Paediatr Scand; 1979; 68; 441-51


Tidigare inlägg
RSS 2.0