Boten är mycket värre än soten

Boten är mycket värre än soten

och

Alla injektioner med modRNA och LNP måste stoppas och förbjudas omedelbart

 

 

 

Förklaring av uteblivet skydd mot infektion av virus med främmande glykoproteiner.

 

Vi har alltid haft svårigheter att producera verkningsfulla vacciner mot infektiösa organismer som har glykoproteiner på sin utsida. Ett glykoprotein består av ett protein där även sockermolekyler är tillkopplade för att täcka en del av proteinets yta. Vi kan inte göra antikroppar mot sockermolekyler eller fetter utan bara mot proteiner.

Denna kunskap är gammal. Vaccintillverkarna har använt olika tekniker för att slå sönder glykoproteiner för att kunna injicera virus eller bakterier med glykoproteiner för att kroppen ska bilda antikroppar mot de nyexponerade inåtvända proteindelarna. Man har sällan lyckats och man har inte alltid fått ett långvarigt skydd utan ofta svåra bivekningar av vaccinet.

Virus som det patenterade och därmed av människa konstruerade SARS-CoV-2, de naturliga virus som HIV, mässling, RSV och fågelinfluensa med flera virus har i sitt hölje glykoproteiner som yttersta försvar mot kroppens immunförsvar, främst antikroppar.

Man har försökt göra proteinvacciner mot HIV sedan upptäckten av viruset på 1980-talet men inte lyckats få dem att fungera som skydd mot infektion av virus utan dessa injektioner gav svåra biverkningar och även dödsfall. Samma med RSV, mässling och coronavirus.

Detta beror på att virus spikprotein är närmast heltäckt på ytan av sockermolekyler som tegelpannor på ett hustak och där finns inga proteindelar exponerade på ytan som antikroppar kan komma åt. Vi må betänka att antikroppar är ganska stora till formatet och sockermolekylerna sitter ganska tätt.

Slår man sönder spikprotein från exempelvis det patenterade och därmed av människa konstruerade SARS-CoV-2 och sprutar in i en försöksperson så kan den personen bilda antikroppar mot vissa delar av insidan av spikproteinet och vi får mätbara och stora mängder antikroppar mot dessa inåtvända delar men inga antikroppar mot den försockrade utsidan.

Dessa antikroppar kan, trots mätbart höga nivåer, inne binda sig till den infektiösa viruspartikeln som är täckt med sockermolekyler.

Antikropparna saknar skyddande effekt på intakta och därmed infektiösa viruspartiklar. Man riskerar att bli sjuk i infektionen eftersom antikropparna inte kan skydda kroppen.

Men antikropparna kan binda sig mot förstörda viruspartiklars insidor. En skadad viruspartikel saknar infektionsförmåga.

Notera att de konstnärliga, konstfulla och datorgenererade bilderna av det patenterade och därmed av människa konstruerade SARS-CoV-2 viruset saknar de moln av sockermolekyler som täcker utsidan av spikproteinerna. Om de skulle ha avbildats eller presenterats, då skulle vem som helst kunna avslöja bedrägeriet att kroppen skulle kunna bilda antikroppar mot det patenterade och därmed av människa konstruerade SARS-CoV-2-viruset.

Kroppen kan bilda mycket stora antikroppsmägder mot proteiner som kanske bara delvis har en skyddande effekt. Det kallas Antibody Dependent Enhancement 1 (ADE) då kroppen försöker försvara sig med dåligt fungerande antikroppar genom att producera fler antikroppar för att söka kompensera för dålig effekt.

Det har visats att de fragmenterade modRNA molekylerna kan få cellen att tillverka delar av spikproteinet varför det bildas stora mängder helt odefinierade och okända proteiner.

Det patenterade och därmed av människa konstruerade modRNA för spikproteinet kan finnas kvar i mer än sex månader och producera mer och mer och mer av visat toxiska, giftiga, patenterade och därmed av människa konstruerade spikprotein och fragment av detta. Detta ger ännu mer produktion av dåligt fungerande antikroppar och än mer ADE som kan ge långa proteinkomplex som ser ut som maskar i blod- och lymfkärl.

Sammanfattningsvis så kan kroppen inte bilda antikroppar mot virus med glykoproteiner på utsidan av virus och att ge ett modRNA preparat kan inte ge en infektionsskyddande effekt trots höga antikroppsnivåer.

Det är fel antikroppar som bildas och förbrukas och kan bilda meterlånga proteinproppar i blod- och lymfkärl.

Det enda som händer är att kroppens immunförsvar försämras inom sex månader och att dessa biovapeninjektioner ökar risken för sjukdom och död orsakat av det patenterade och därmed av människa konstruerade SARS-CoV-2.

Det patenterade och därmed av människa konstruerade modRNA är per definition ett biovapen och med tillräcklig kunskap i molekylärbiologi, immunologi och biokemi kan vi genast konstatera att

Boten är mycket värre än soten:

 

Alla injektioner med modRNA och LNP måste stoppas och förbjudas omedelbart

Östervåla den 2 juni 2024

Björn Hammarskjöld
assisterande professor i pediatrik vid Strömstad Akademi
F.d. överläkare i pediatrik
Filosofie licantiat i biokemi vid Stockholms Universitet (1971)
Molekylärbiolog
Virolog

 

 

Utdrag ur en fantastisk artikel av Stephanie Seneff och Greg Nigh 2021

Stephanie Seneff and Greg Nigh. Worse Than the Disease? Reviewing Some Possible Unintended Consequences of the mRNA Vaccines Against COVID-19. International Journal of Vaccine Theory, Practice, and Research 2(1), May 10, 2021. International Journal of Vaccine Theory, Practice, and Research 2(1), https://ijvtpr.com/index.php/IJVTPR/article/view/23

 

Technology of mRNA Vaccines In the early phase of nucleotide-based gene therapy development, there was considerably more effort invested in gene delivery through DNA plasmids rather than through mRNA technology. Two major obstacles for mRNA are its transient nature due to its susceptibility to breakdown by RNAses, as well as its known power to invoke a strong immune response, which interferes with its transcription into protein. Plasmid DNA has been shown to persist in muscle up to six months, whereas mRNA almost certainly disappears much sooner. For vaccine applications, it was originally thought that the immunogenic nature of RNA could work to an advantage, as the mRNA could double as an adjuvant for the vaccine, eliminating the arguments in favor of a toxic additive like aluminum. However, the immune response results not only in an inflammatory response but also the rapid clearance of the RNA and suppression of transcription. So this idea turned out not to be practical. There was an extensive period of time over which various ideas were explored to try to keep the mRNA from breaking down before it could produce protein. A major advance was the realization that substituting methyl-pseudouridine for all the uridine nucleotides would stabilize RNA against degradation, allowing it to survive long enough to produce adequate amounts of protein antigen

International Journal of Vaccine Theory, Practice, and Research 2(1), May 10, 2021 Page | 43

needed for immunogenesis (Liu, 2019). This form of mRNA delivered in the vaccine is never seen in nature, and therefore has the potential for unknown consequences. The Pfizer-BioNTech and Moderna mRNA vaccines are based on very similar technologies, where a lipid nanoparticle encloses an RNA sequence coding for the full-length SARS-CoV-2 spike protein. In the manufacturing process, the first step is to assemble a DNA molecule encoding the spike protein. This process has now been commoditized, so it’s relatively straightforward to obtain a DNA molecule from a specification of the sequence of nucleotides (Corbett et al., 2020). Following a cell-free in vitro transcription from DNA, utilizing an enzymatic reaction catalyzed by RNA polymerase, the single-stranded RNA is stabilized through specific nucleoside modifications, and highly purified. The company Moderna, in Cambridge, MA, is one of the developers of deployed mRNA vaccines for SARS-CoV-2. Moderna executives have a grand vision of extending the technology for many applications where the body can be directed to produce therapeutic proteins not just for antibody production but also to treat genetic diseases and cancer, among others. They are developing a generic platform where DNA is the storage element, messenger RNA is the “software” and the proteins that the RNA codes for represent diverse application domains. The vision is grandiose and the theoretical potential applications are vast (Moderna, 2020). The technology is impressive, but manipulation of the code of life could lead to completely unanticipated negative effects, potentially long term or even permanent.

SARS-CoV-2 is a member of the class of positive-strand RNA viruses, which means that they code directly for the proteins that the RNA encodes, rather than requiring a copy to an antisense strand prior to translation into protein. The virus consists primarily of the single-strand RNA molecule packaged up inside a protein coat, consisting of the virus’s structural proteins, most notably the spike protein, which facilitates both viral binding to a receptor (in the case of SARS-CoV-2 this is the ACE2 receptor) and virus fusion with the host cell membrane. The SARS-CoV-2 spike protein is the primary target for neutralizing antibodies. It is a class I fusion glycoprotein, and it is analogous to haemagglutinin produced by influenza viruses and the fusion glycoprotein produced by syncytial viruses, as well as gp160 produced by human immunodeficiency virus (HIV) (Corbett et al., 2020). The mRNA vaccines are the culmination of years of research in exploring the possibility of using RNA encapsulated in a lipid particle as a messenger. The host cell’s existing biological machinery is co-opted to facilitate the natural production of protein from the mRNA. The field has blossomed in part because of the ease with which specific oligonucleotide DNA sequences can be synthesized in the laboratory without the direct involvement of living organisms. This technology has become commoditized and can be done at large-scale, with relatively low cost. Enzymatic conversion of DNA to RNA is also straightforward, and it is feasible to isolate essentially pure single-strand RNA from the reaction soup (Kosuri and Church, 2014).

1. Considerations in mRNA Selection and Modification While the process is simple in principle, the manufacturers of mRNA vaccines do face some considerable technical challenges. The first, as we’ve discussed, is that extracellular mRNA itself can induce an immune response which would result in its rapid clearance before it is even taken up b

International Journal of Vaccine Theory, Practice, and Research 2(1), May 10, 2021 Page | 44 cells. So, the mRNA needs to be encased in a nanoparticle that will keep it hidden from the immune system. The second issue is getting the cells to take up the nanoparticles. This can be solved in part by incorporating phospholipids into the nanoparticle to take advantage of natural pathways of lipid particle endocytosis. The third problem is to activate the machinery that is involved in translating RNA into protein. In the case of SARS-CoV-2, the protein that is produced is the spike protein. Following spike protein synthesis, antigen-presenting cells need to present the spike protein to T cells, which will ultimately produce protective memory antibodies (Moderna, 2020). This step is not particularly straightforward, because the nanoparticles are mostly taken up by muscle cells, which, being immobile, are not necessarily equipped to launch an immune response. As we will see, the likely scenario is that the spike protein is synthesized by muscle cells and then handed over to macrophages acting as antigen-presenting cells, which then launch the standard B-cell-based antibody-generating cascade response. The mRNA that is enclosed in the vaccines undergoes several modification steps following its synthesis from a DNA template. Some of these steps involve preparing it to look exactly like a human mRNA sequence appropriately modified to support ribosomal translation into protein. Other modifications have the goal of protecting it from breakdown, so that sufficient protein can be produced to elicit an antibody response. Unmodified mRNA induces an immune response that leads to high serum levels of interferon-α (IF- α), which is considered an undesirable response. However, researchers have found that replacing all of the uridines in the mRNA with N-methyl-pseudouridine enhances stability of the molecule while reducing its immunogenicity (Karikó et al. 2008; Corbett et al., 2020). This step is part of the preparation of the mRNA in the vaccines, but, in addition, a 7methylguanosine “cap” is added to the 5’ end of the molecule and a poly-adenine (poly-A) tail, consisting of 100 or more adenine nucleotides, is added to the 3’ end. The cap and tail are essential in maintaining the stability of the mRNA within the cytosol and promoting translation into protein (Schlake et al., 2012; Gallie, 1991). Normally, the spike protein flips very easily from a pre-fusion configuration to a post-fusion configuration. The spike protein that is in these vaccines has been tweaked to encourage it to favor a stable configuration in its prefusion state, as this state provokes a stronger immune response (Jackson et al., 2020). This was done via a “genetic mutation,” by replacing a critical two-residue segment with two proline residues at positions 986 and 987, at the top of the central helix of the S2 subunit (Wrapp et al., 2020). Proline is a highly inflexible amino acid, so it interferes with the transition to the fusion state. This modification provides antibodies much better access to the critical site that supports fusion and subsequent cellular uptake. But might this also mean that the genetically modified version of the spike protein produced by the human host cell following instructions from the vaccine mRNA lingers in the plasma membrane bound to ACE2 receptors because of impaired fusion capabilities? What might be the consequence of this? We don’t know. Researchers in China published a report in Nature in August 2020 in which they presented data on several experimental mRNA vaccines where the mRNA coded for various fragments and proteins in the SARS-CoV-2 virus. They tested three distinct vaccine formulations for their ability to induce an appropriate immune response in mice. The three structural proteins, S (spike), M and E are minimal requirements to assemble a “virus-like particle” (VLP). Their hypothesis was that providing M and E as well as the S spike protein in the mRNA code would permit the assembly of VLPs that migh

International Journal of Vaccine Theory, Practice, and Research 2(1), May 10, 2021 Page | 45 elicit an improved immune response, because they more closely resemble the natural virus than S protein exposed on the surface of cells that have taken up only the S protein mRNA from the vaccine nanoparticles. They were also hoping that critical fragments of the spike protein would be sufficient to induce immunity, rather than the entire spike protein, if viral-like particles could be produced through augmentation with M and E (Lu et al., 2020). They confirmed experimentally that a vaccine containing the complete genes for all three proteins elicited a robust immune response that lasted for at least eight weeks following the second dose of the vaccine. Its performance was far superior to that of a vaccine containing only the spike protein. Disappointingly, a vaccine that contained only critical components of the spike protein, augmented with the other two envelope proteins, elicited practically no response. Moderna researchers have conducted similar studies with similar results. They concluded that the spike protein alone was clearly inferior to a formulation containing RNA encoding all three envelope proteins, and they hypothesized that this was due to the fact that all three proteins were needed to allow the cell to release intact virus-like particles, rather than to just post the spike protein in the plasma membrane. The spike protein alone failed to initiate a T cell response in animal studies, whereas the formulation with all three proteins did (Corbett et al., 2020). The two emergency-approved vaccines only contain mRNA code for spike protein (without E or M), and there must have been a good reason for this decision, despite its observed poor performance. It is possible that more sophisticated design of the lipid nanoparticle (see below) resulted in the ability to have the lipids serve as an adjuvant (similar to aluminum that is commonly added to traditional vaccines) while still protecting the RNA from degradation. Another curious modification in the RNA code is that the developers have enriched the sequence in cytosines and guanines (Cs and Gs) at the expense of adenines and uracils (As and Us). They have been careful to replace only the third position in the codon in this way, and only when it does not alter the amino acid map (Hubert, 2020). It has been demonstrated experimentally that GC-rich mRNA sequences are expressed (translated into protein) up to 100-fold more efficiently than GCpoor sequences (Kudla et al., 2006). So this appears to be another modification to further assure synthesis of abundant copies of the spike protein. We do not know the unintended consequences of this maneuver. Intracellular pathogens, including viruses, tend to have low GC content compared to the host cell’s genome (Rocha and Danchin, 2020). So, this modification may have been motivated in part by the desire to enhance the effectiveness of the deception that the protein is a human protein. All of these various modifications to the RNA are designed to make it resist breakdown, appear more like a human messenger RNA protein-coding sequence, and efficiently translate into antigenic protein.

 

 

1Stephanie Seneff and Greg Nigh. Worse Than the Disease? Reviewing Some Possible Unintended Consequences of the mRNA Vaccines Against COVID-19. International Journal of Vaccine Theory, Practice, and Research 2(1), May 10, 2021. International Journal of Vaccine Theory, Practice, and Research 2(1), https://ijvtpr.com/index.php/IJVTPR/article/view/23